bridge weigh in motion
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 36)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xudong Jian

Complicated traffic scenarios, including random change of vehicles’ speed and lane, as well as the simultaneous presence of multiple vehicles on bridge, are main obstacles that prevents bridge weigh-in-motion (BWIM) technique from reliable and accurate application. To tackle the complicated traffic problems of BWIM, this paper develops a novel BWIM method which integrates deep-learning-based computer vision technique and bridge influence surface theory. In this study, bridge strains and traffic videos are recorded synchronously as the data source of BWIM. The computer vision technique is employed to detect and track vehicles and corresponding axles from traffic videos so that spatio-temporal paths of vehicle loads on the bridge can be obtained. Then a novel method is proposed to identify the strain influence surface (SIS) of the bridge structure based on the time-synchronized strain signals and vehicle paths. After the SIS is identified, the axle weight (AW) and gross vehicle weight (GVW) can be identified by integrating the SIS, time-synchronized bridge strain, and vehicle paths. For illustration and verification, the proposed method is applied to identify AW and GVW in scale model experiments, in which the vehicle-bridge system is designed with high fidelity, and various complicated traffic scenarios are simulated. Results confirm that the proposed method contributes to improve the existing BWIM technique with respect to complicated traffic scenarios.


Author(s):  
Alan J. Ferguson ◽  
David Hester ◽  
Roger Woods

AbstractExisting work on rotation-based bridge monitoring has focused on indirect methods, such as bridge weigh-in-motion or influence line approaches. However, these approaches require increased instrumentation complexity, and require calibration, necessitating bridge closures. In this paper, we explore the potential of using rotation measurements to create a more practical and cost-effective monitoring system. To this end, we present a damage detection method which directly analyses bridge rotation data measured under live, free-flow traffic loading. We show how the Earth Mover’s Distance, typically used in statistics and image processing, can be applied directly on end-of-span rotation measurement data to achieve effective damage detection and localisation. Numerical simulation results demonstrate the approach’s robustness to the confounding effects of temperature variation and traffic diversity (vehicle type, loading, and velocity). The direct rotation measurement approach is applied to data from an in-service short-span bridge to demonstrate the technique’s capability with free-flow traffic loading.


Structures ◽  
2021 ◽  
Vol 30 ◽  
pp. 1056-1070
Author(s):  
Ricardo Pimentel ◽  
Diogo Ribeiro ◽  
Luís Matos ◽  
Araliya Mosleh ◽  
Rui Calçada

Sign in / Sign up

Export Citation Format

Share Document