Bridge Damage Localization Using Axle Weight Time History Data Obtained through a Bridge Weigh-in-Motion System

2021 ◽  
Vol 35 (5) ◽  
pp. 04021065
Author(s):  
Yun-Tao Wei ◽  
Ting-Hua Yi ◽  
Dong-Hui Yang ◽  
Hong-Nan Li
2020 ◽  
Vol 10 (2) ◽  
pp. 663 ◽  
Author(s):  
Eugene OBrien ◽  
Muhammad Arslan Khan ◽  
Daniel Patrick McCrum ◽  
Aleš Žnidarič

This paper develops a novel method of bridge damage detection using statistical analysis of data from an acceleration-based bridge weigh-in-motion (BWIM) system. Bridge dynamic analysis using a vehicle-bridge interaction model is carried out to obtain bridge accelerations, and the BWIM concept is applied to infer the vehicle axle weights. A large volume of traffic data tends to remain consistent (e.g., most frequent gross vehicle weight (GVW) of 3-axle trucks); therefore, the statistical properties of inferred vehicle weights are used to develop a bridge damage detection technique. Global change of bridge stiffness due to a change in the elastic modulus of concrete is used as a proxy of bridge damage. This approach has the advantage of overcoming the variability in acceleration signals due to the wide variety of source excitations/vehicles—data from a large number of different vehicles can be easily combined in the form of inferred vehicle weight. One year of experimental data from a short-span reinforced concrete bridge in Slovenia is used to assess the effectiveness of the new approach. Although the acceleration-based BWIM system is inaccurate for finding vehicle axle-weights, it is found to be effective in detecting damage using statistical analysis. It is shown through simulation as well as by experimental analysis that a significant change in the statistical properties of the inferred BWIM data results from changes in the bridge condition.


2021 ◽  
Vol 11 (2) ◽  
pp. 745
Author(s):  
Sylwia Stawska ◽  
Jacek Chmielewski ◽  
Magdalena Bacharz ◽  
Kamil Bacharz ◽  
Andrzej Nowak

Roads and bridges are designed to meet the transportation demands for traffic volume and loading. Knowledge of the actual traffic is needed for a rational management of highway infrastructure. There are various procedures and equipment for measuring truck weight, including static and in weigh-in-motion techniques. This paper aims to compare four systems: portable scale, stationary truck weigh station, pavement weigh-in-motion system (WIM), and bridge weigh-in-motion system (B-WIM). The first two are reliable, but they have limitations as they can measure only a small fraction of the highway traffic. Weigh-in-motion (WIM) measurements allow for a continuous recording of vehicles. The presented study database was obtained at a location that allowed for recording the same traffic using all four measurement systems. For individual vehicles captured on a portable scale, the results were directly compared with the three other systems’ measurements. The conclusion is that all four systems produce the results that are within the required and expected accuracy. The recommendation for an application depends on other constraints such as continuous measurement, installation and operation costs, and traffic obstruction.


2003 ◽  
Vol 31 (6) ◽  
pp. 11686 ◽  
Author(s):  
DR Petersen ◽  
RE Link ◽  
P McNulty ◽  
EJ O'Brien

2013 ◽  
Vol 8 (4) ◽  
pp. 263-270 ◽  
Author(s):  
Eugene J OBrien ◽  
Arturo González ◽  
Jason Dowling ◽  
Aleš Žnidarič

2020 ◽  
Vol 10 (14) ◽  
pp. 4708 ◽  
Author(s):  
Donya Hajializadeh ◽  
Aleš Žnidarič ◽  
Jan Kalin ◽  
Eugene John OBrien

This study describes the development and testing of a railway bridge weigh-in-motion (RB-WIM) system. The traditional bridge WIM (B-WIM) system developed for road bridges was extended here to calculate the weights of railway carriages. The system was tested using the measured response from a test bridge in Poland, and the accuracy of the system was assessed using statically-weighed trains. To accommodate variable velocity of the trains, the standard B-WIM algorithm, which assumes a constant velocity during the passage of a vehicle, was adjusted and the algorithm revised accordingly. The results showed that the vast majority of the calculated carriage weights fell within ±5% of their true, statically-weighed values. The sensitivity of the method to the calibration methods was then assessed using regression models, trained by different combinations of calibration trains.


Sign in / Sign up

Export Citation Format

Share Document