scholarly journals Faulted‐phase identification scheme for series‐compensated transmission lines during the power swing

Author(s):  
Mohammed Hussien Hassan Musa
Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4065
Author(s):  
You-Jin Lee ◽  
Jeong-Yong Heo ◽  
O-Sang Kwon ◽  
Chul-Hwan Kim

Power quality and stability have become the most important issues in power system operations, Micro Grids, and Smart Grids. Sensitive equipment can be seriously damaged when exposed to unstable power swing conditions. An unstable system may cause serious damage to Micro Grid System elements such as generators, transformers, transmission lines, and so forth. Therefore, out-of-step detection is essential for the safe operation of a Micro Grid system. In general, Equal Area Criterion (EAC) is a method for evaluating the stability of Smart Grid systems. However, EAC can be performed only if it is possible to analyze the active power and generator angle. This paper presents an analysis of the trajectory of complex power using a mathematical model. The variation of complex power is analyzed using a mathematical method, and then the relationship between complex power and EAC is presented, and a simulation performed. Later, in part II, a novel out-of-step detection algorithm based on part I will be presented and tested.


2013 ◽  
Vol 732-733 ◽  
pp. 1056-1064
Author(s):  
Yang Chen ◽  
Yan Hu ◽  
Neng Ling Tai

Since the existing fault phase identification methods can not identify all fault types quickly and accurately for high voltage transmission lines, this article proposed a new method of fault phase identification based on the fault component of phase voltage difference and the kalman filter algorithm. The method defined the fault components ratio of one phase voltage to the difference of the other two phase voltages as a fault phase identification factor. By analyzing the characteristics of fault phase identification factors in each fault type, the fault phase can be identified. Simulation results show that using the kalman filter algorithm to extract fundamental component is faster and more accurate. Meanwhile, the method can identify fault phases within half a cycle and is scarcely influenced by fault resistances, fault locations and fault initial phase angles. It also has a high sensitivity when the fault is on the side of strong source.


2019 ◽  
Vol 13 (15) ◽  
pp. 3252-3263 ◽  
Author(s):  
Mohamed I. Zaki ◽  
Ragab A. El Sehiemy ◽  
Ghada M. Amer ◽  
Fathy M. Abo El Enin

Sign in / Sign up

Export Citation Format

Share Document