inductive loop detector
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
Christian Röger ◽  
Maja Kalinic ◽  
Jukka M. Krisp

AbstractWe present an approach to use static traffic count data to find relatively representative areas within Floating Car Data (FCD) datasets. We perform a case study within the state of Nordrhein-Westfalen, Germany using enviroCar FCD and traffic count data obtained from Inductive Loop Detectors (ILD). Findings indicate that our approach combining FCD and traffic count data is capable of assessing suitable subsets within FCD datasets that contain a relatively high ratio of FCD records and ILD readings. We face challenges concerning the correct choice of traffic count data, counting individual FCD trajectories and defining a threshold by which an area can be considered as representative.


Author(s):  
Yiqiao Li ◽  
Andre Y. C. Tok ◽  
Stephen G. Ritchie

Trucks are an essential element in freight movements, transporting 73% of freight tonnage among all modes. However, they are also associated with severe adverse impacts on roadway congestion, safety, and air pollution. Truck speed by truck body types has been considered as an indicator of traffic conditions and roadway emissions. Even though vehicle speed estimation has been researched for decades, there exists a gap in estimating truck speeds particularly at the individual vehicle level. The wide diversity of vehicle lengths associated with trucks makes it especially challenging to estimate truck speeds from conventional inductive loop detector data. This paper presents a new speed estimation model which uses detailed vehicle signature data from single inductive loop sensors equipped with advanced detectors to provide accurate truck speed estimates. This model uses new inductive signature features that show a strong correlation with truck speed. A modified feature weighting K-means algorithm was used to cluster vehicle length related features into 16 specific groups. Individual vehicle speed regression models were then developed within each cluster. Finally, a multi-layer perceptron neural network model was used to assign single loop signatures to the pre-determined speed related clusters. The new model delivered promising estimation results on both a truck-focused dataset and a general traffic dataset.


Author(s):  
H. Shankar ◽  
M. Sharma ◽  
K. Oberai ◽  
S. Saran

<p><strong>Abstract.</strong> Rapid increase in road traffic density results into a serious problem of Traffic Congestion (TC) in cities. During peaks hours TC is very high and hence public search least congested path for their journeys in order to minimize ravel time and hence transportation cost. In this study, a new empirical model was developed to estimate congestion levels using real time road Traffic Parameters (TPs) such as vehicle density, speed, class and vehicle-to-vehicle (V2V) gap. These real time road TPs were collected using latest generation Inductive Loop Detector (ILD) technology. Further, a WebGIS based Road Traffic Information System (RTIS) for Dehradun city was developed for real time TD analyses and visualisation. This RTIS is very useful for public and user departments for planning and decision making processes. No other such system is available in India, which handles multiple traffic parameters simultaneously to provide solution of day-to-day problems.</p>


Author(s):  
Goli Koti Veera Yogesh ◽  
Anuj Sharma ◽  
Lelitha Vanajakshi

Inductive loop detectors (ILDs) are one of the most widely deployed traffic sensors. At present, for lane-by-lane detection, ILDs require separate connecting cables for each loop (each lane) and separate data acquisition systems or detector channels to process them. This becomes problematic with limited conduit and cabinet space. In most cases, transportation agencies use ILDs connected in series to avoid these constraints, in which case the lane-by-lane information is lost. However, research has shown that lane-by-lane detection can lead to safer and more efficient operations at signalized intersections. In order to ease the application of lane-by-lane detection, the current study proposes a solution that uses electronic circuit modification to convert the existing serially connected loops to carry out lane-by-lane detection. This system achieved 100% accuracy of lane-by-lane detection in test runs. The paper also proposes an improved loop design, for future installations, that can be used for vehicle classification and wrong way detection. The study implemented machine-learning algorithms for vehicle classification and direction determination with an accuracy of 99.6% and 78.57%, respectively, using single loop configuration.


2017 ◽  
Vol 2610 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Andre Tok ◽  
Kyung (Kate) Hyun ◽  
Sarah Hernandez ◽  
Kyungsoo Jeong ◽  
Yue (Ethan) Sun ◽  
...  

Understanding truck activity is an essential component of strategic freight planning and programming. However, recent studies have revealed a significant void in the availability of detailed truck activity data. Although some existing detectors are capable of providing truck counts by axle configuration, higher-resolution data that indicate truck body configuration, industry served, and commodity carried cannot be obtained from existing sensors. This paper presents the newly developed Truck Activity Monitoring System, which leverages existing in-pavement traffic sensors to provide truck activity data in California. Existing inductive loop detector sites were updated with inductive signature technology and advanced truck classification models were implemented to provide detailed truck count data with more than 40 truck body configurations. The system has been deployed to more than 90 detector locations in California to provide coverage at state borders, regional cordons, and significant metropolitan truck corridors. An interactive geographic information system website provides users with advanced visual analytics and access to archived data across all deployed locations. The case studies presented in this paper demonstrate the potential of the data obtained from this system in analyzing and understanding current and historical industry-specific truck activity.


2014 ◽  
Vol 14 (12) ◽  
pp. 4315-4322 ◽  
Author(s):  
David Guilbert ◽  
Sio-Song Ieng ◽  
Cedric Le Bastard ◽  
Yide Wang

2014 ◽  
Vol 21 (4) ◽  
pp. 619-630 ◽  
Author(s):  
J. Gajda ◽  
M. Mielczarek

Abstract The work proposes a new method for vehicle classification, which allows treating vehicles uniformly at the stage of defining the vehicle classes, as well as during the classification itself and the assessment of its correctness. The sole source of information about a vehicle is its magnetic signature normalised with respect to the amplitude and duration. The proposed method allows defining a large number (even several thousand) of classes comprising vehicles whose magnetic signatures are similar according to the assumed criterion with precisely determined degree of similarity. The decision about the degree of similarity and, consequently, about the number of classes, is taken by a user depending on the classification purpose. An additional advantage of the proposed solution is the automated defining of vehicle classes for the given degree of similarity between signatures determined by a user. Thus the human factor, which plays a significant role in currently used methods, has been removed from the classification process at the stage of defining vehicle classes. The efficiency of the proposed approach to the vehicle classification problem was demonstrated on the basis of a large set of experimental data.


Sign in / Sign up

Export Citation Format

Share Document