silica diagenesis
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Shahab Varkouhi ◽  
Joseph A. Cartwright ◽  
Nicholas J. Tosca ◽  
Dominic Papineau

2021 ◽  
Author(s):  
Shahab Varkouhi ◽  
Nicholas J. Tosca ◽  
Joseph A. Cartwright

<p>Biogenic silica diagenesis leads to abrupt changes in the physical properties of host sediment across the depth of an opal-A to opal-CT transition zone. Predicting the present-day diagenetic state of this reaction boundary, i.e., active versus arrested opal-A to opal-CT transition zones, is imperative to constraining the diagenetic factors that impact dramatic variations in the physical state of sediment. This study assesses whether there are present-day signatures of active silica diagenesis in the interstitial water, and corroborates the potential for pore-water chemistry for distinguishing between ongoing precipitation of diagenetic opal and arrested reaction fronts. Interstitial-water chemistry, mineralogy, and thermodynamic analyses of the Ocean Drilling Program Sites 794 and 795 demonstrate that solubility equilibrium is reached with respect to opal-CT in the transition zones accommodated by the Neogene biosiliceous sediments in the Sea of Japan. Even though the dissolution of biogenic opal is triggering reverse-weathering processes, the equilibrium reached with respect to diagenetic opal strongly suggests that the dissolved silica depression across the transition zones is essentially influenced by ongoing transformation of opal-A to opal-CT. Owing to abrupt petrophysical variations linked to opal-CT precipitation, the interstitial profiles of major ions and primary parameters have also been impacted by silica diagenesis. The extremely low dissolved-silica diffusion fluxes in the sediment, the very low permeability of the sediment capturing silica diagenetic transformations, and the marked pore-water loss at the depth of the transition zone all support the fact that the dissolved species have not been diffused in the sediment at rates comparable to those by pore-water advection due to sediment porosity drop. Advective and diffusive mechanisms, however, appear to have ceased recently because they have failed to smooth out the traces of ongoing biogenic silica diagenesis.</p>


2020 ◽  
Vol 90 (9) ◽  
pp. 1037-1067
Author(s):  
Shahab Varkouhi ◽  
Nicholas J. Tosca ◽  
Joseph A. Cartwright

ABSTRACT Silica diagenesis leads to dramatic petrophysical variations in the host sediment across the depth of an opal-A to opal-CT transition zone. Predicting the present-day diagenetic status of opal-A to opal-CT transition zones, i.e., active versus fossilized fronts, is essential to constraining the drivers that control abrupt changes in the physical state of sediment. This study assesses whether there are modern signatures of ongoing silica diagenesis in the sediment pore water, and demonstrates the potential for pore-water-chemistry profiles for distinguishing between active opal-CT precipitation and fossil transition zones. Pore-water chemistry, mineralogy, and thermodynamic analyses of the Ocean Drilling Program Wells 794 and 795 indicate that solubility equilibrium has been reached with respect to opal-CT in the transition zones captured by the Neogene biosilica in the Sea of Japan. Even though silica dissolution might be triggering a reverse-weathering process, the equilibrium reached with respect to diagenetic opal strongly suggests that the silica drop across the transition zones is mainly influenced by active opal-A to opal-CT transformation. Owing to abrupt petrophysical variations associated with opal-CT formation, other interstitial profiles—major ions and primary parameters—have been influenced by silica diagenesis. The extremely low silica diffusion fluxes in the sediment, the low permeability of host sediment, and the occurrence of considerable pore-water loss at the depth of the transition zone all support this conclusion that the dissolved species have not been diffused in the sediment at rates comparable to those by pore-water advection. Advection and diffusion, however, appear to have ceased recently because they have failed to smooth the signature of ongoing silica diagenesis. The porosity drop during opal-A to opal-CT diagenesis at Sites 794 and 795 is principally attributed to chemically induced anomalous compaction, causing the sediment framework to lose its strength under fragmentation and extensive opal-A dissolution.


2020 ◽  
Author(s):  
Emily M. Hoyt ◽  
John N. Hooker

Abstract. Fracture patterns, interactions, and crosscutting relationships are tools for interpretation of fractures as paleostress indicators for past tectonic events and as past or present-day fluid-flow networks. In the Appalachian Basin in Central Pennsylvania along Mount Nittany Expressway Route 322 lies a significantly stratified fracture set hosted in Ordovician age limestone. Tectonic strain is a problematic mechanism for these fractures because they are hosted in individual beds lacking apparent mechanical significance relative to other limestone beds in the outcrop. Many of the fractures are layer-parallel, a characteristic commonly observed in shales, due to shales' mechanical anisotropy and tendency to develop fluid overpressures; however, these fracture-hosting limestones lack obvious mechanical anisotropy. Fracture orientations vary, but desiccation, bentonite swelling, and dolomitization are eliminated by an interpreted transgressional paleoenvironment and a deficiency of the hypothesized minerals. X-ray diffraction determined the composition of samples collected, point-count quantification determined fracture intensity, and optical petrography recorded scaled petrographic photographs. Comparison between fracture intensity and host-rock minerals reveal that silica content is consistently depleted in fractured layers relative to unfractured layers. The diagenetic transition of biogenic silica to quartz is suggested to be the driving mechanism based on silica being present as biogenic grains, as well as cement and detrital grains, and fractures being filled with calcite cement. Silica migration explains the volume lost from fractured layers in a proposed horizontal fracturing mechanism whereby the host rock shrinks but is excluded from vertical contraction.


Sign in / Sign up

Export Citation Format

Share Document