germanic basin
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 2)

Lethaia ◽  
2021 ◽  
Author(s):  
Yu Pei ◽  
Jan‐Peter Duda ◽  
Jan Schönig ◽  
Cui Luo ◽  
Joachim Reitner
Keyword(s):  

2021 ◽  
Author(s):  
Yu Pei ◽  
Hans Hagdorn ◽  
Thomas Voigt ◽  
Jan-Peter Duda ◽  
Joachim Reitner

The aftermath of the Permian – Triassic crisis is characterized by ubiquitous occurrences of microbial sediments around the world. For instance, Triassic deposits of the Germanic Basin have shown to provide a rich record of stromatolites as well as of microbe-metazoan build-ups with non-spicular demosponges. Despite their paleoecological significance, however, all of these microbialites have only rarely been studied. This study aims to fill this gap by examining and comparing microbialites from the Upper Buntsandstein (Olenekian, Early Triassic) and the lower Middle Muschelkalk (Anisian, Middle Triassic). By combining analytical petrography (optical microscopy, micro X-ray fluorescence, Raman spectroscopy) and geochemistry (δ13Ccarb, δ18Ocarb), we show that all studied microbialites formed in hypersaline lagoons to sabkha environments. Olenekian deposits in Jena and surroundings and Anisian strata at Werbach contain stromatolites. Anisian successions at Hardheim, in contrast, host microbe-metazoan build-ups. Thus, the key-difference is the absence or presence of non-spicular demosponges in microbialites. After the Permian – Triassic crisis, the widespread microbialites (e.g., stromatolites/microbe-metazoan build-ups) possibly resulted from suppressed ecological competition and occupied the vacant ecological niche. It seems plausible that microbes and non-spicular demosponges had a mutualistic relationship and it is tempting to speculate that the investigated microbial-metazoan build-ups reflect an ancient evolutionary and ecologic association. Furthermore, both microbes and non-spicular demosponges may benefit from elevated salinities. Perhaps it was minor differences in salinities that controlled whether or not non-spicular demosponges could develop.


2021 ◽  
Vol 107 (3) ◽  
pp. 102507
Author(s):  
Robert Niedźwiedzki ◽  
Dawid Surmik ◽  
Agnieszka Chećko ◽  
Karolina Paszcza ◽  
Sreepat Jain ◽  
...  

Sedimentology ◽  
2021 ◽  
Author(s):  
Domenico C. G. Ravidà ◽  
Luca Caracciolo ◽  
Saturnina Henares ◽  
Meike Janßen ◽  
Harald Stollhofen

2021 ◽  
Vol 47 (1) ◽  
pp. 33-40
Author(s):  
Robert Niedźwiedzki ◽  
Dawid Surmik ◽  
Agnieszka Chećko ◽  
Mariusz A Salamon

A bromalite from the Middle Triassic (Muschelkalk) of southern Poland, Sadowa Góra Quarry, is herein described and interpreted as a regurgitalite. The fossils occurring within the regurgitalite are angular and have sharp edges. They are represented by common fragments of thin-shelled bivalves as well as rare crinoid and gastropod remains. The composition of the collected inclusion is different from that of the host rock. There are many candidates that could have produced the regurgitalite, including durophagous sharks, marine reptiles, the actinopterygian Colobodus, or nautiloids. Our finding adds to the emerging evidence of durophagous predation in the Triassic sea of Polish part of the Germanic Basin. It is the second record of a regurgitalite from the Muschelkalk of Upper Silesia.


2021 ◽  
Author(s):  
Yu Pei ◽  
Jan-peter Duda ◽  
Jan Schoenig ◽  
Cui Luo ◽  
Joachim Reitner

The so-called Permian — Triassic mass extinction was followed by a prolonged period of ecological recovery that lasted until the Middle Triassic. Triassic stromatolites from the Germanic Basin seem to be an important part of the puzzle, but have barely been investigated so far. Here we analyzed late Anisian (upper Middle Muschelkalk) stromatolites from across the Germanic Basin by combining petrographic approaches (optical microscopy, micro X-ray fluorescence, Raman imaging) and geochemical analyses (sedimentary hydrocarbons, stable carbon and oxygen isotopes). Paleontological and sedimentological evidence, such as Placunopsis bivalves, intraclasts and disrupted laminated fabrics, indicate that the stromatolites formed in subtidal, shallow marine settings. This interpretation is consistent with δ13Ccarb of about -2.1 % to -0.4 %. Occurrences of calcite pseudomorphs after gypsum suggest slightly evaporitic environments, which is well in line with the relative rarity of fossils in the host strata. Remarkably, the stromatolites are composed of microbes (perhaps cyanobacteria and sulfate reducing bacteria) and metazoans such as non-spicular demosponges, Placunopsis bivalves, and/or Spirobis-like worm tubes. Therefore, these ″stromatolites″ should more correctly be referred to as microbe-metazoan build-ups. They are characterized by diverse lamination types, including planar, wavy, domal and conical ones. Microbial mats likely played an important role in forming the planar and wavy laminations. Domal and conical laminations commonly show clotted to peloidal features and mesh-like fabrics, attributed to fossilized non-spicular demosponges. Our observations not only point up that non-spicular demosponges are easily overlooked and might be mistakenly interpreted as stromatolites, but also demonstrate that microbe-metazoan build-ups were widespread in the Germanic Basin during Early to Middle Triassic times. In the light of our findings, it appears plausible that the involved organisms benefited from elevated salinities. Another (not necessarily contradictory) possibility is that the mutualistic relationship between microbes and non-spicular demosponges enabled these organisms to fill ecological niches cleared by the Permian — Triassic Crisis. If that is to be the case, it means that such microbe-metazoan associations maintained their advantage until the Middle Triassic.


Author(s):  
Martin Segesdi ◽  
Attila Ősi

AbstractSauropterygia was a diverse clade of secondary aquatic reptiles, which represented one of the most important vertebrate groups in the shallow marine communities during the Triassic. However, despite the long history of collection and examination of sauropterygian remains, previous studies have indicated that the fossil record of this group is incomplete, making the understanding of their palaeobiogeographic relations difficult. Here we describe new sauropterygian remains from the Middle Triassic (Ladinian) Templomhegy Dolomite Member (Villány, southern Hungary), which were unearthed during systematic fieldwork of previous years. Among several non-diagnostic sauropterygian remains, this material contains isolated bones belonging to Nothosaurus sp., Simosauridae indet. and a small-sized nothosaurid. The known faunal composition from Villány is similar to what was described from the Middle Triassic of the Germanic Basin and Bihor Mountains (northwestern Romania). Besides isolated elements, a probably associated skeleton of a small-sized eosauropterygian specimen of unknown affinities is also reported here. This locality widens our knowledge on Triassic sauropterygian distribution and provides new information about the previously not well-known Middle Triassic vertebrate fauna of the one-time southern Eurasian shelf region.


Sign in / Sign up

Export Citation Format

Share Document