ocean color remote sensing
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 22)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Guoqing Wang ◽  
John Moisan

Pigments, as a vital part of phytoplankton, act as the light harvesters and protectors in the process of photosynthesis. Historically, most of the previous studies have been focused on chlorophyll a, the primary light harvesting pigment. With the advances in technologies, especially High-Performance Liquid Chromatography (HPLC) and satellite ocean color remote sensing, recent studies promote the importance of the phytoplankton accessory pigments. In this chapter, we will overview the technology advances in phytoplankton pigment identification, the history of ocean color remote sensing and its application in retrieving phytoplankton pigments, and the existing challenges and opportunities for future studies in this field.


2021 ◽  
Vol 257 ◽  
pp. 112356
Author(s):  
Karlis Mikelsons ◽  
Menghua Wang ◽  
Xiao-Long Wang ◽  
Lide Jiang

2021 ◽  
Author(s):  
Violeta Slabakova ◽  
Snejana Moncheva ◽  
Nataliya Slabakova ◽  
Nina Dzembekova

<p>The Black Sea is an extraordinarily complex water body for ocean color remote sensing, as it belong to Case 2 waters, which are characterized by relatively high absorption by Colored Dissolved Organic Matter (CDOM) while the concentration of non-pigmented particulate matter does not co-vary in a predictable manner with chlorophyll <em>a</em> . The optical complexity of the Black Sea is the reason why the standard bio-optical algorithms developed for Case 1 waters, are the source of large uncertainties (of the order of hundreds of percent) of chlorophyll <em>a</em> concentration in the coastal and shelf regions. In the framework of ESA contract “BIO-OPTICS FOR OCEAN COLOR REMOTE SENSING OF THE BLACK SEA - Black Sea Color” we developed empirical ocean color algorithm for chlorophyll<em> a </em>retrieval from Sentinel 3A/OLCI primary ocean color products using the <em>in situ </em>reference bio-optical datasets collected in the Black Sea in the period 2012-2019. Results obtained from the assessment of operational S3A/OLCI chlorophyll products, highlighted and confirmed that the specific regional algorithm is essential for the Black Sea. The coefficients of the regional algorithm were derived from the regression of log-transformed pigment concentrations and remote sensing reflectance ratio at 490nm and 560 nm with determination coefficient R<sup>2</sup> =0.88 and number of samples N=186. The algorithm predicts chlorophyll a values using a cubic polynomial formulation. The result of assessment of the regional chlorophyll <em>a</em> product against independent in situ measurements from the data utilized for algorithm development, showed relatively high accuracy (31.7%), fewer underestimations (MPD=-9.2%) and a good agreement (R<sup>2</sup>=0.66) between datasets indicating that the regional algorithm is more effective in reproducing the  pigment concentration in the Black Sea waters in comparison to the standard Sentinel 3A/OLCI algorithms. Our analysis revealed the importance of providing regional algorithms strictly required to suit the peculiar bio-optical properties featuring this basin. However, this requires collection of accurate<em> in situ </em>measurements in the different parts of the Black Sea. The validity of the reported empirical algorithm obviously depends on the size of the dataset used for its development. The Black Sea waters vary at a basin level due to the sub-regional features, environmental factors and seasonal variability, consequently the presented regional algorithm might have a limited generalization capability. Clearly, more<em> in situ</em> data with improved spatial and temporal coverage are critically needed for further calibration and validation of the ocean color products in the Black Sea.</p>


2021 ◽  
Vol 13 (4) ◽  
pp. 675
Author(s):  
Afonso Ferreira ◽  
Vanda Brotas ◽  
Carla Palma ◽  
Carlos Borges ◽  
Ana C. Brito

Phytoplankton bloom phenology studies are fundamental for the understanding of marine ecosystems. Mismatches between fish spawning and plankton peak biomass will become more frequent with climate change, highlighting the need for thorough phenology studies in coastal areas. This study was the first to assess phytoplankton bloom phenology in the Western Iberian Coast (WIC), a complex coastal region in SW Europe, using a multisensor long-term ocean color remote sensing dataset with daily resolution. Using surface chlorophyll a (chl-a) and biogeophysical datasets, five phenoregions (i.e., areas with coherent phenology patterns) were defined. Oceanic phytoplankton communities were seen to form long, low-biomass spring blooms, mainly influenced by atmospheric phenomena and water column conditions. Blooms in northern waters are more akin to the classical spring bloom, while blooms in southern waters typically initiate in late autumn and terminate in late spring. Coastal phytoplankton are characterized by short, high-biomass, highly heterogeneous blooms, as nutrients, sea surface height, and horizontal water transport are essential in shaping phenology. Wind-driven upwelling and riverine input were major factors influencing bloom phenology in the coastal areas. This work is expected to contribute to the management of the WIC and other upwelling systems, particularly under the threat of climate change.


2021 ◽  
Vol 253 ◽  
pp. 112228
Author(s):  
Yongchao Wang ◽  
Zhongping Lee ◽  
Jianwei Wei ◽  
Shaoling Shang ◽  
Menghua Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document