cloud attenuation
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 17)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Mustapha Adewusi

Consistently required lager bandwidth at lower cost induce increases in magnitude of transmission frequency for satellite signal. This is phenomenally accompanied by proportional hydrometeors attenuation. Hence, there is need to evaluate cloud attenuation impact in every climatic region periodically. This report is one of the outcomes of experimental communication research carried out at tropical Ota (6.7oN, 3.23oE) station, southwest, Nigeria. The station spectrum analyzer measures its received beacons total attenuation at 12.245 GHz and elevation angle 59.9o to Astra satellites located at 28.2oE. Daily maximum, minimum and mean temperatures; rain amount, wind speed and direction as well as time of occurrence of each of these weather parameters were also measured. Then the radiometric data including acquired radiosonde data were analysed under rainy and non-rainy conditions, to obtain cloud attenuation contribution from the total attenuation measured per minute. The various data used range in measurement periods between four and fifty-eight years. The outputs were used to compute the station cumulative distributions for the existing cloud models and for the integrated station’s data. Statistical analysis comparing the two cumulative distributions show a high difference between the measured data and existing models’ predicted values. Hence a cloud attenuation computation algorithm and its simulation program were developed and used to derive a new tropical cloud attenuation model. The results of climatic data and analysis were used to justify the well corroborated new cloud attenuation model.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alejandro Garcia ◽  
Gustavo Siles ◽  
Juan Pablo Arciénega ◽  
Yasmin Balderrama

Cloud attenuation in satellite communication systems becomes a relevant issue as the frequency increases, and thus, it has to be taken into account when link availability is being calculated. This atmospheric impairment is a variable atmospheric phenomenon whose characterization has to be done not only on a yearly-basis but also on a seasonal and monthly basis. In the present paper, cloud attenuation statistics are reported at 20 GHz, 40 GHz and 75 GHz during rainy and non-rainy seasons in El Alto, Bolivia, at 4065 m of altitude, using 3 years of radiosoundings (2016-2019). Cloud detection models have been used for the calculations, including Salonen, Salonen08, Decker and CldMod models, and results obtained are compared to those given by the global model of the ITU-R Rec. P.840. The results lead to conclude that zenith cloud attenuation during rainy season can reach maximum values between 0.15 and 0.45 dB (20 GHz), 0.55 and 1.5 dB (40 GHz), and 1.3 and 3.9 dB (75 GHz) depending on the model to be used. In comparison, during non-rainy season these values vary between 0.08 and 0.33 dB (20 GHz), 0.26 and 1.1 dB (40 GHz), and 0.62 and 2.6 dB (75 GHz). On the other hand, statistics based on CldMod model and, in a less extent, Decker model are close to the ones obtained using the ITU-R global model. These observations could open the possibility of further studies assessing the reliability of meteorological parameters in digital maps at high altitude sites, because these data are used in global propagation models.


Sign in / Sign up

Export Citation Format

Share Document