trajectory linearization
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Pin Guo ◽  
Kun Xu ◽  
Huichao Deng ◽  
Haoyuan Liu ◽  
Xilun Ding

AbstractIn this paper, a multi-propeller aerial robot with a passive manipulator for aerial manipulation is presented. In order to deal with the collision, external disturbance, changing inertia, and underactuated characteristic during the aerial manipulation, an adaptive trajectory linearization control (ATLC) scheme is presented to stabilize the multi-propeller aerial robot during the whole process. The ATLC controller is developed based on trajectory linearization control (TLC) method and model reference adaptive control (MRAC) method. The stability of the proposed system is analyzed by common Lyapunov function. Numerical simulations are carried out to compare the ATLC with TLC controller facing collision, external disturbance and changing inertia during an aerial manipulation. Experimental results prove that the developed robot can achieve aerial manipulation in the outdoor environment.


2020 ◽  
Vol 10 (10) ◽  
pp. 3538 ◽  
Author(s):  
Bingbing Qiu ◽  
Guofeng Wang ◽  
Yunsheng Fan

This paper presents a novel robust control strategy for path following of an unmanned surface vehicle (USV) suffering from unknown dynamics and rudder saturation. The trajectory linearization control (TLC) method augmented by the neural network, linear extended state observer (LESO), and auxiliary system is used as the main control framework. The salient features of the presented strategy are as follows: in the guidance loop, a fuzzy predictor line-of-sight (FPLOS) guidance law is proposed to ensure that the USV effectively follows the given path, where the fuzzy method is introduced to adjust lookahead distance online, and thereby achieving convergence performance; in the control loop, we develop a practical robust path following controller based on enhanced TLC, in which the neural network and LESO are adopted to handle unmodeled dynamics and external disturbances, respectively. Meanwhile, a nonlinear tracking differentiator (NTD) is constructed to achieve satisfactory differential and filter performance. Then, the auxiliary system is incorporated into the controller design to handle rudder saturation. Using Lyapunov stability theory, the entire system is ensured to be uniformly ultimately bounded (UUB). Simulation comparisons illustrate the effectiveness and superiority of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document