structured mesh
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
V. Hidalgo ◽  
M. Velasco ◽  
E. Cando ◽  
E. Valencia ◽  
S. Simbaña ◽  
...  

2021 ◽  
pp. 103104
Author(s):  
Xinhai Chen ◽  
Jie Liu ◽  
Chunye Gong ◽  
Shengguo Li ◽  
Yufei Pang ◽  
...  

2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Dengqian Ma ◽  
Yuanqiao Zhang ◽  
Zhigang Li ◽  
Jun Li ◽  
Xin Yan

Abstract To accurately predict the leakage flow and resistance characteristics of brush seals, the multiblock structured mesh and the mesh motion technique are applied to the three-dimensional (3D) staggered tube bundle model of brush seals. The multiblock structured mesh can easily add nodes and set boundary layers in the interbristle gap between adjacent bristles, which can ensure good mesh quality (orthogonal angle and expansion ratio). The mesh motion technique realizes the overall axial compactness of the bristle pack. The effects of pressure ratio Rp, sealing clearance c, and bristle pack compactness on the leakage flow and resistance characteristics are investigated. To analyze the aerodynamic resistance of the brush seals, Euler number (Eu) is applied in this study. The numerical results are in good agreement with the experimental data. Thus, the accuracy of the presented numerical method is validated. For the contacting brush seal, ΔSx, i has a significant effect on the leakage flow rate reduction. For the clearance brush seal, ΔSx, i has little effect on the leakage flow rate reduction. The leakage flow passing through the sealing clearance keeps almost constant. As for aerodynamic resistance, the presence of the sealing clearance can effectively convert the pressure energy of the leakage flow into the kinetic energy. As a result, the leakage flow velocity exiting the bristle pack of the clearance brush seal is 1.5 to 2.0 times larger than that of the contacting brush seal. Although the existence of the sealing clearance obviously increases the leakage flow rate, it effectively reduces the aerodynamic forces acting on the bristles. The developed numerical approach based on the three-dimensional staggered tube bundle model and multiblock structured mesh can serve as a technical method for analysis of the sealing mechanisms of brush seals.


2020 ◽  
pp. 34-40
Author(s):  
Михаил Владимирович Хижняк ◽  
Екатерина Викторовна Дорошенко ◽  
Вячеслав Юрьевич Усенко

The study of flow in aircraft gas turbine engines is one of the main components for the creation of new compressors and fans with improved aerodynamic, acoustic, strength, overall weight, and other characteristics. In modern scientific research, the methods of the physical experiment are used at the final stages of flow studies in blade machines. a numerical experiment is used in the early stages. An obvious advantage of the numerical experiment is the ability to study many variants of constructions under different input and boundary conditions in a short period. However, a numerical experiment requires a preliminary selection and justification of its parameters and components. One such important component is the type of calculation mesh. The literature review shows that it is impossible to make an unambiguous conclusion about the choice of the type of method for generating the finite element mesh and the turbulence model. This work aims to compare a hybrid and structured mesh for flow modeling in an axial fan of a bypass engine with a high bypass ratio. Two impellers of a bypass engine with a high bypass ratio are selected as the object of study. Flow simulation in fans was studied at a rotor speed of 2202 rpm in the range of values of the gas-dynamic flow function at the inlet q (λ) = 0.4 ... 0.65. Based on the literature review, the system of Navier-Stokes equations was closed by the SST turbulent model. To select and substantiate the method of finite-element grid generation, a structured and hybrid mesh for two fan variants were constructed. According to the results of the calculations, the dependence of the pressure ratio of fan π on the gas-dynamic flow function at the inlet q (λ) was constructed. According to the results of the study, it can be stated that the discrepancy of the calculations for the impellers in the axial fan of a bypass engine with a high bypass ratio with structured and hybrid meshes will be up to 2 %. When choosing the method of mesh generation, the time of calculation is also an important factor. Studies have shown that the calculation with a structured mesh took place in less time by 50 ... 70% than when using a hybrid mesh for one variant of the geometry.


2020 ◽  
Vol 145 ◽  
pp. 102803 ◽  
Author(s):  
Fengshun Lu ◽  
Long Qi ◽  
Xiong Jiang ◽  
Gang Liu ◽  
Yang Liu ◽  
...  

Author(s):  
Pedro Henrique de Araújo Bitencourt ◽  
Henrique Matos Campos ◽  
ALUISIO PANTALEAO

Sign in / Sign up

Export Citation Format

Share Document