preparative electrophoresis
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 1)

H-INDEX

20
(FIVE YEARS 0)

2018 ◽  
Vol 12 (2) ◽  
Author(s):  
V. Yukalo ◽  
L. Storozh ◽  
K. Datsyshyn ◽  
O. Krupa

The article considers the possibility of obtaining purified fractions-precursors of bioactive peptides from milk proteins by the method of preparative electrophoresis. To choose an electrophoretic system, a comparative study has been carried out of four methods of electrophoresis in polyacrylamide gel that are used to analyse milk proteins (disc-electrophoresis without disaggregating agents, and disc-electrophoresis in the presence of sodium dodecylsulfate in homogeneous and gradient gel, and electrophoresis in homogeneous gel with urea). Electrophoresis of the total milk protein has shown that none of these systems allows separating effectively all protein precursors of bioactive peptides. The next stage was obtaining two main groups of milk proteins – caseins and serum proteins for electrophoretic fractionation. With the help of analytical electrophoresis, it has been established that each of the obtained groups had a typical proteins composition. Then, the proteins groups obtained were fractionated by preparative electrophoresis using the four electrophoretic systems listed above. In this case, the casein proteins that differ in the primary structure (αS1-, αS2-, β-, and ϰ-caseins) can be effectively separated by preparative electrophoresis on the basis of a homogeneous gel system in the presence of urea. The composition of this electrophoretic system was simplified. Unlike the analytical variant of a homogeneous polyacrylamide gel system, the toxic 2-mercaptoethanol was excluded, and the urea concentration was reduced. For the fractionation of serum proteins, a disc-electrophoresis without disaggregating agents can be used as a basis. It allows obtaining the main precursors of bioactive peptides from milk serum proteins: β-lactoglobulin, α-lactalbumin, serum albumin, and immunoglobulins. The protein precursors obtained by preparative electrophoresis were used to develop the biotechnology of obtaining bioactive phosphopeptides and inhibitors of the angiotensin-converting enzyme.


2014 ◽  
Vol 26 (8) ◽  
pp. 1117 ◽  
Author(s):  
Mariola A. Dietrich ◽  
Błażej Westfalewicz ◽  
Patrycja Jurecka ◽  
Ilgiz Irnazarow ◽  
Andrzej Ciereszko

Parvalbumins (Pv) are calcium-binding proteins present mainly in the muscle and nervous system where they act as a Ca2+ buffer. Our previous work demonstrated the presence of Pv-I in carp semen and indicated the presence of a second Pv (Pv-II). The purpose of the present work was to identify, purify and determine the full-length cDNA sequence of Pv-II from carp testis. Pv-II from seminal plasma was purified by ion-exchange chromatography (IEC) and preparative electrophoresis, while the Pv-II from spermatozoa was purified by IEC, gel filtration and preparative electrophoresis. The purified Pv-II was submitted to an analysis of molecular mass, isoelectric point (pI), amino-acid sequence and oligomerisation ability. The amino-acid sequence was used to construct primers and obtain the full-length cDNA sequence of seminal-specific Pv-II from carp testis. Analysis of the cDNA sequence indicated that carp-testis Pv-II was distinct from carp-muscle parvalbumins. Pv-II was distinct from Pv-I regarding sequence, molecular mass and pI. Both parvalbumins had the ability to form oligomers or to bind to other proteins. Carp seminal plasma had a protective effect against parvalbumin oligomerisation. Pv-II underwent post-translational modification such as n-acetylation and cysteinylation. The present study is the first to report the full-length cDNA sequence of parvalbumin from carp testis.


2009 ◽  
Vol 28 (4) ◽  
pp. 268-273 ◽  
Author(s):  
Jérôme Zoidakis ◽  
Ploumisti Dimitraki ◽  
Panagiotis Zerefos ◽  
Antonia Vlahou

Application of Preparative Electrophoresis for Clinical Proteomics in Urine: Is it Feasible?Urine samples are easily attainable which makes them ideal substrates for biomarker research. Various techniques have been employed to unravel the urine proteome and identify disease biomarkers. Even though the presence of high abundance proteins in urine is not so pronounced as in the case of plasma, the presence of proteolytic products, many of which at low abundance, along with numerous frequently random chemical modifications, makes the analysis of urinary proteins challenging. To facilitate the detection of low abundance urinary proteins, in the study presented herein we applied two different electrophoretic techniques, preparative Lithium Dodecyl Sulfate (LDS)-PAGE in combination with 2-DE for urinary protein separation and enrichment. Our results indicate the effectiveness of this approach for the enrichment of low abundance and low molecular weight proteins and peptides in urine, and contribute towards the establishment of a urinary proteomic database. The application of this technique as a biomarker discovery tool faces several challenges: these include down-scaling of the technique, possible recompensation for the consequent expected decrease in protein resolution, by optimizing steps of the experimental workflow as well as getting a good understanding of the technical variability of the technique. Under these conditions, preparative electrophoresis can become an effective tool for clinical proteomics applications.


Sign in / Sign up

Export Citation Format

Share Document