quantitative phenotype
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 2)

2020 ◽  
Author(s):  
Yuriko Katsumata ◽  
David W. Fardo

Abstract Background: Current sequencing technologies have provided for a more comprehensive genome-wide assessment and have increased genotyping accuracy of rare variants. Scan statistic approaches have previously been adapted to genetic sequencing data. Unlike currently-employed association tests, scan-statistic-based approaches can both localize clusters of disease-related variants and, subsequently, examine the phenotype association within the resulting cluster. In this study, we present a novel Quantitative Phenotype Scan Statistic (QPSS) that extends an approach for dichotomous phenotypes to continuous outcomes in order to identify genomic regions where rare quantitative-phenotype-associated variants cluster. Results: We demonstrate the performance and practicality of QPSS with extensive simulations and an application to a whole-genome sequencing (WGS) study of cerebrospinal fluid (CSF) biomarkers from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Using QPSS, we identify regions of rare variant enrichment associated with levels of AD-related proteins, CSF Aβ1-42 and p-tau181P.Conclusions: QPSS is implemented under the assumption that causal variants within a window have the same direction of effect. Typical self-contained tests employ a null hypothesis of no association between the target variant set and the phenotype. Therefore, an advantage of the proposed competitive test is that it is possible to refine a known region of interest to localize disease-associated clusters. The definition of clusters can be easily adapted based on variant function or annotation.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuriko Katsumata ◽  
David W. Fardo

Abstract Background Current sequencing technologies have provided for a more comprehensive genome-wide assessment and have increased genotyping accuracy of rare variants. Scan statistic approaches have previously been adapted to genetic sequencing data. Unlike currently-employed association tests, scan-statistic-based approaches can both localize clusters of disease-related variants and, subsequently, examine the phenotype association within the resulting cluster. In this study, we present a novel Quantitative Phenotype Scan Statistic (QPSS) that extends an approach for dichotomous phenotypes to continuous outcomes in order to identify genomic regions where rare quantitative-phenotype-associated variants cluster. Results We demonstrate the performance and practicality of QPSS with extensive simulations and an application to a whole-genome sequencing (WGS) study of cerebrospinal fluid (CSF) biomarkers from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Using QPSS, we identify regions of rare variant enrichment associated with levels of AD-related proteins, CSF Aβ1–42 and p-tau181P. Conclusions QPSS is implemented under the assumption that causal variants within a window have the same direction of effect. Typical self-contained tests employ a null hypothesis of no association between the target variant set and the phenotype. Therefore, an advantage of the proposed competitive test is that it is possible to refine a known region of interest to localize disease-associated clusters. The definition of clusters can be easily adapted based on variant function or annotation.


2020 ◽  
Author(s):  
Yuriko Katsumata ◽  
David W. Fardo

Abstract Background: Current sequencing technologies have provided for a more comprehensive genome-wide assessment and have increased genotyping accuracy of rare variants. Scan statistic approaches have previously been adapted to genetic sequencing data. Unlike currently-employed association tests, scan-statistic-based approaches can both localize clusters of disease-related variants and, subsequently, examine the phenotype association within the resulting cluster. In this study, we present a novel Quantitative Phenotype Scan Statistic (QPSS) that extends an approach for dichotomous phenotypes to continuous outcomes in order to identify genomic regions where rare quantitative-phenotype-associated variants cluster. Results: We demonstrate the performance and practicality of QPSS with extensive simulations and an application to a whole-genome sequencing (WGS) study of cerebrospinal fluid (CSF) biomarkers from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Using QPSS, we identify regions of rare variant enrichment associated with levels of AD-related proteins, CSF Aβ 1-42 and p-tau 181P . Conclusions: QPSS is implemented under the assumption that causal variants within a window have the same direction of effect. Typical self-contained tests employ a null hypothesis of no association between the target variant set and the phenotype. Therefore, an advantage of the proposed competitive test is that it is possible to refine a known region of interest to localize disease-associated clusters. The definition of clusters can be easily adapted based on variant function or annotation.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 477-477
Author(s):  
Mathilde Le Sciellour ◽  
Sébastien Dejean ◽  
David Renaudeau ◽  
Olivier Zemb

Abstract The present study aimed at predicting feed efficiency (FE) based on fecal microbiota, using partial least square regression (PLSR), sparse PLSR, and random forest regression (RF). Fecal samples from 147 Pietrain x (Large White x Landrace) pigs reared in two consecutive batches were collected at 99 days of age. Daily live body weight and feed intake were individually measured in pigs fed ad libitum with a corn soybean diet. The relative abundances of operational taxonomic units (OTU) resulting from fecal 16S rRNA sequencing were used to build the prediction models of FE between 99 and 113 days. From these data, neither PLSR nor RF models have been validated on external datasets. An important over-fitting has been observed in PLSR. With this aim to test the ability of the methods to retrieve information, synthetic OTU were created to fit an artificial Pearson correlation with FE (r² = 0 to 0.9) and were added among the predictors in the dataset. Artificial OTU correlated above 0.37 with FE improved the prediction in sparse PLSR and RF, and reduced the over-fitting. The best predictions were achieved by sparse PLSR. The present study emphasized the ability of sparse PLSR and RF to build valid prediction models of a quantitative phenotype, based on fecal microbiota composition. Since no OTU was correlated above 0.30 with FE in the real dataset, the power of the prediction methods was not enough to extract useful information from the fecal microbiota. The functional redundancy of the microbiota could explain the lack of relevant information in the real dataset to predict pigs’ quantitative phenotype. These results suggest that the best strategy is to run sparse PLSR only if a correlation higher than 0.37 is observed. This study is part of the Feed-a-Gene Project funded from the European Union’s H2020 Program (grant 633531).


2019 ◽  
Vol 35 (21) ◽  
pp. 4336-4343 ◽  
Author(s):  
W Jenny Shi ◽  
Yonghua Zhuang ◽  
Pamela H Russell ◽  
Brian D Hobbs ◽  
Margaret M Parker ◽  
...  

Abstract Motivation Complex diseases often involve a wide spectrum of phenotypic traits. Better understanding of the biological mechanisms relevant to each trait promotes understanding of the etiology of the disease and the potential for targeted and effective treatment plans. There have been many efforts towards omics data integration and network reconstruction, but limited work has examined the incorporation of relevant (quantitative) phenotypic traits. Results We propose a novel technique, sparse multiple canonical correlation network analysis (SmCCNet), for integrating multiple omics data types along with a quantitative phenotype of interest, and for constructing multi-omics networks that are specific to the phenotype. As a case study, we focus on miRNA–mRNA networks. Through simulations, we demonstrate that SmCCNet has better overall prediction performance compared to popular gene expression network construction and integration approaches under realistic settings. Applying SmCCNet to studies on chronic obstructive pulmonary disease (COPD) and breast cancer, we found enrichment of known relevant pathways (e.g. the Cadherin pathway for COPD and the interferon-gamma signaling pathway for breast cancer) as well as less known omics features that may be important to the diseases. Although those applications focus on miRNA–mRNA co-expression networks, SmCCNet is applicable to a variety of omics and other data types. It can also be easily generalized to incorporate multiple quantitative phenotype simultaneously. The versatility of SmCCNet suggests great potential of the approach in many areas. Availability and implementation The SmCCNet algorithm is written in R, and is freely available on the web at https://cran.r-project.org/web/packages/SmCCNet/index.html. Supplementary information Supplementary data are available at Bioinformatics online.


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Yiqing Zhao ◽  
Jennifer R Smith ◽  
Shur-Jen Wang ◽  
Melinda R Dwinell ◽  
Mary Shimoyama

Methods ◽  
2016 ◽  
Vol 102 ◽  
pp. 20-25 ◽  
Author(s):  
Weiyang Chen ◽  
Xian Xia ◽  
Yi Huang ◽  
Xingwei Chen ◽  
Jing-Dong J. Han

Sign in / Sign up

Export Citation Format

Share Document