macroalgal cover
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 8 (9) ◽  
pp. 210035
Author(s):  
Amy A. Briggs ◽  
Anya L. Brown ◽  
Craig W. Osenberg

Microbes influence ecological processes, including the dynamics and health of macro-organisms and their interactions with other species. In coral reefs, microbes mediate negative effects of algae on corals when corals are in contact with algae. However, it is unknown whether these effects extend to larger spatial scales, such as at sites with high algal densities. We investigated how local algal contact and site-level macroalgal cover influenced coral microbial communities in a field study at two islands in French Polynesia, Mo'orea and Mangareva. At 5 sites at each island, we sampled prokaryotic microbial communities (microbiomes) associated with corals, macroalgae, turf algae and water, with coral samples taken from individuals that were isolated from or in contact with turf or macroalgae. Algal contact and macroalgal cover had antagonistic effects on coral microbiome alpha and beta diversity. Additionally, coral microbiomes shifted and became more similar to macroalgal microbiomes at sites with high macroalgal cover and with algal contact, although the microbial taxa that changed varied by island. Our results indicate that coral microbiomes can be affected by algae outside of the coral's immediate vicinity, and local- and site-level effects of algae can obscure each other's effects when both scales are not considered.



2021 ◽  
pp. 1-6
Author(s):  
Jan-Claas Dajka ◽  
Victoria Beasley ◽  
Gilberte Gendron ◽  
Nicholas AJ Graham

Summary There is an assumption that tropical sea urchins are macroalgal grazers with the ability to control macroalgal expansion on degraded coral reefs. We surveyed abundances of Echinothrix calamaris, an urchin species common in the western Indian Ocean on 21 reefs of the inner Seychelles and predicted their density using habitat predictors in a modelling approach. Urchin densities were greatest on patch reef habitat types and declined with increasing macroalgal cover. Next, we experimentally investigated the macroalgae-urchin relationship by penning two sea urchin densities on macroalgal fields. Over six weeks, the highest density treatment (4.44 urchins m−2) cleared 13% of macroalgal cover. This moderate impact leads us to conclude that controlling macroalgal expansion is not likely to be one of the main functions of E. calamaris in the inner Seychelles given the current densities we found in our surveys (mean: 0.02 urchins m−2, maximum: 0.16 urchins m−2).



2020 ◽  
Vol 12 (11) ◽  
pp. 1901 ◽  
Author(s):  
Laura Lõugas ◽  
Tiit Kutser ◽  
Jonne Kotta ◽  
Ele Vahtmäe

Coastal macroalgae worldwide provide multiple ecological functions and support vital ecosystem services. Thereby, it is important to monitor changes in the extent of benthic macroalgal cover. However, as in situ sampling is costly and time-consuming, areal estimates of macroalgal species cover are often based only on a limited number of samples. This low sampling effort likely yields very biased estimates, as macroalgal communities are often characterized by large spatial variability at multiple spatial scales. Moreover, ecological time series are often short-term, making it impossible to assess changes in algal communities over decades and relate this to different human pressures and/or climate change. The Landsat series satellites have operated for 40 years. In the current study, we tested if the Landsat sensors could be used for mapping the cover of shallow water benthic macroalgae. This study was carried out at two sites in the West Estonian Archipelago, in the northeastern Baltic Sea. Our results show that the Landsat imagery accurately reflected both spatial and temporal variability in benthic algal cover. To conclude, the current methodology can be used to improve the existing assessments of areal macroalgal cover, or to estimate the cover values, in areas and times lacking ecological observations.



2020 ◽  
Vol 101 (1) ◽  
Author(s):  
Daniela M. Ceccarelli ◽  
Richard D. Evans ◽  
Murray Logan ◽  
Philippa Mantel ◽  
Marji Puotinen ◽  
...  


2019 ◽  
Vol 30 (1) ◽  
Author(s):  
Daniela M. Ceccarelli ◽  
Richard D. Evans ◽  
Murray Logan ◽  
Philippa Mantel ◽  
Marji Puotinen ◽  
...  


2019 ◽  
Author(s):  
William F. Precht ◽  
Richard B. Aronson ◽  
Toby A. Gardner ◽  
Jennifer A. Gill ◽  
Julie P. Hawkins ◽  
...  

AbstractCaribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift -- grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in) -- still remain somewhat controversial in the coral reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977–2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ∼35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.



PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2084 ◽  
Author(s):  
Adam Suchley ◽  
Melanie D. McField ◽  
Lorenzo Alvarez-Filip

Long-term phase shifts from coral to macroalgal dominated reef systems are well documented in the Caribbean. Although the impact of coral diseases, climate change and other factors is acknowledged, major herbivore loss through disease and overfishing is often assigned a primary role. However, direct evidence for the link between herbivore abundance, macroalgal and coral cover is sparse, particularly over broad spatial scales. In this study we use a database of coral reef surveys performed at 85 sites along the Mesoamerican Reef of Mexico, Belize, Guatemala and Honduras, to examine potential ecological links by tracking site trajectories over the period 2005–2014. Despite the long-term reduction of herbivory capacity reported across the Caribbean, the Mesoamerican Reef region displayed relatively low macroalgal cover at the onset of the study. Subsequently, increasing fleshy macroalgal cover was pervasive. Herbivorous fish populations were not responsible for this trend as fleshy macroalgal cover change was not correlated with initial herbivorous fish biomass or change, and the majority of sites experienced increases in macroalgae browser biomass. This contrasts the coral reef top-down herbivore control paradigm and suggests the role of external factors in making environmental conditions more favourable for algae. Increasing macroalgal cover typically suppresses ecosystem services and leads to degraded reef systems. Consequently, policy makers and local coral reef managers should reassess the focus on herbivorous fish protection and consider complementary measures such as watershed management in order to arrest this trend.



Sign in / Sign up

Export Citation Format

Share Document