aragonite saturation
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 26)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol 8 ◽  
Author(s):  
Katarzyna Zamelczyk ◽  
Agneta Fransson ◽  
Melissa Chierici ◽  
Elizabeth Jones ◽  
Julie Meilland ◽  
...  

Planktic foraminfera and shelled pteropods are important calcifying groups of zooplankton in all oceans. Their calcium carbonate shells are sensitive to changes in ocean carbonate chemistry predisposing them as an important indicator of ocean acidification. Moreover, planktic foraminfera and shelled pteropods contribute significantly to food webs and vertical flux of calcium carbonate in polar pelagic ecosystems. Here we provide, for the first time, information on the under-ice planktic foraminifera and shelled pteropod abundance, species composition and vertical distribution along a transect (82°–76°N) covering the Nansen Basin and the northern Barents Sea during the polar night in December 2019. The two groups of calcifiers were examined in different environments in the context of water masses, sea ice cover, and ocean chemistry (nutrients and carbonate system). The average abundance of planktic foraminifera under the sea-ice was low with the highest average abundance (2 ind. m–3) close to the sea-ice margin. The maximum abundances of planktic foraminifera were concentrated at 20–50 m depth (4 and 7 ind. m–3) in the Nansen Basin and at 80–100 m depth (13 ind. m–3) close to the sea-ice margin. The highest average abundance (13 ind. m–3) and the maximum abundance of pteropods (40 ind. m–3) were found in the surface Polar Water at 0–20 m depth with very low temperatures (–1.9 to –1°C), low salinity (<34.4) and relatively low aragonite saturation of 1.43–1.68. The lowest aragonite saturation (<1.3) was observed in the bottom water in the northern Barents Sea. The species distribution of these calcifiers reflected the water mass distribution with subpolar species at locations and depths influenced by warm and saline Atlantic Water, and polar species in very cold and less saline Polar Water. The population of planktic foraminifera was represented by adults and juveniles of the polar species Neogloboquadrina pachyderma and the subpolar species Turborotalita quinqueloba. The dominating polar pteropod species Limacina helicina was represented by the juvenile and veliger stages. This winter study offers a unique contribution to our understanding of the inter-seasonal variability of planktic foraminfera and shelled pteropods abundance, distribution and population size structure in the Arctic Ocean.


2021 ◽  
Vol 21 (1) ◽  
pp. 47-55
Author(s):  
Phu Le Hung ◽  
Tuan Linh Vo Tran ◽  
Ngoc Pham Hong

Ocean acidification (OA) refers to the increase of dissolved CO2 and the reduction in the pH of seawater as a consequence of the absorption of large amounts of carbon dioxide (CO2) by the oceans. This process is the result of large quantities of CO2, produced by vehicles and industrial and agricultural activities. Over the past decades there have been many worldwide studies focusing on potential impacts of OA. However, researches regarding this issue remain scarce in Vietnam. In this paper, data of pH, total alkalinity (TA), dissolved inorganic carbon (HCO3-, CO32-, CO2), partial pressure of CO2 (pCO2) and the state of aragonite saturation (Ωar) measured in Southern waters of Vietnam in 2018 were used to: (1) Provide the initial data of OA parameters in Southern waters of Vietnam; (2) Compare the current situation of OA in Southern waters of Vietnam with the situation of world oceans. The results showed that mean values of pH, TA and CO32- concentrations were 8.04 (7.92–8.11), 2300.28 µmol/kgSW (2,144.10–2,523.15), 218.83 µmol/kgSW (151.32–262.83), respectively. These values were higher in offshore areas than in coastal areas, especially at the estuaries. The average value of pCO2 was 414.47 µatm (327.93–568.59), higher when compared with that of other areas (370 µatm). On the other hand, the state of aragonite saturation of the studied area had the similar patterns of TA and CO32- concentrations. Most of values were always greater than 3, with this saturation state, the marine calcifiers are more likely to survive and reproduce.


2021 ◽  
Author(s):  
Tereza Jarnikova ◽  
Debby Ianson ◽  
Susan E. Allen ◽  
Andrew E. Shao ◽  
Elise M. Olson

<p>Coastal regions are typically characterized by considerable physical variability that in turn leads to dramatic variability in coastal carbonate chemistry.  Recent shipboard and mooring-based observations have shown large spatial and temporal variations of carbonate chemistry parameters, including air-sea CO<sub>2</sub> flux and aragonite saturation state, in one prominent coastal region in the Northeast Pacific Ocean - the Salish Sea. The range of the observed variability in the regional carbonate system is significantly larger than the global anthropogenic change, complicating the detection of secular carbon trends. Simultaneously, sparse observations limit understanding of the carbonate balance as a whole. Here, we use a highly resolved coastal model, SalishSeaCast, to characterize the drivers of the carbonate chemistry balance of the Salish Sea, with an emphasis on air-sea CO<sub>2</sub> flux and aragonite saturation state. We then investigate the impact of a relatively modest increase in anthropogenic carbon in this region in the context of the governing physical and biological dynamics of the system. We examine the striking effects of the anthropogenic change to date on the inorganic carbon balance of the system, highlighting impacts on the aragonite saturation state of the system and its buffering capacity, as well as suggesting some bounds for the regional air-sea and lateral carbon fluxes. We then use the GLODAP dataset of global coastal carbon observations to consider our results in the context of other regions of the Pacific Rim and the global coastal ocean. </p>


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9523
Author(s):  
Steven R. Auscavitch ◽  
Jay J. Lunden ◽  
Alexandria Barkman ◽  
Andrea M. Quattrini ◽  
Amanda W.J. Demopoulos ◽  
...  

In the Caribbean Basin the distribution and diversity patterns of deep-sea scleractinian corals and stylasterid hydrocorals are poorly known compared to their shallow-water relatives. In this study, we examined species distribution and community assembly patterns of scleractinian and stylasterid corals on three high-profile seamounts within the Anegada Passage, a deep-water throughway linking the Caribbean Sea and western North Atlantic. Using remotely operated vehicle surveys conducted on the E/V Nautilus by the ROV Hercules in 2014, we characterized coral assemblages and seawater environmental variables between 162 and 2,157 m on Dog Seamount, Conrad Seamount, and Noroît Seamount. In all, 13 morphospecies of scleractinian and stylasterid corals were identified from video with stylasterids being numerically more abundant than both colonial and solitary scleractinians. Cosmopolitan framework-forming species including Madrepora oculata and Solenosmilia variabilis were present but occurred in patchy distributions among the three seamounts. Framework-forming species occurred at or above the depth of the aragonite saturation horizon with stylasterid hydrocorals being the only coral taxon observed below Ωarag values of 1. Coral assemblage variation was found to be strongly associated with depth and aragonite saturation state, while other environmental variables exerted less influence. This study enhances our understanding of the factors that regulate scleractinian and stylasterid coral distribution in an underreported marginal sea and establishes a baseline for monitoring future environmental changes due to ocean acidification and deoxygenation in the tropical western Atlantic.


2020 ◽  
Vol 17 (14) ◽  
pp. 3837-3857
Author(s):  
Claudine Hauri ◽  
Cristina Schultz ◽  
Katherine Hedstrom ◽  
Seth Danielson ◽  
Brita Irving ◽  
...  

Abstract. The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and climate change. Detection of these long-term trends requires a good understanding of the system’s natural state. The GOA is a highly dynamic system that exhibits large inorganic carbon variability on subseasonal to interannual timescales. This variability is poorly understood due to the lack of observations in this expansive and remote region. We developed a new model setup for the GOA that couples the three-dimensional Regional Oceanic Model System (ROMS) and the Carbon, Ocean Biogeochemistry and Lower Trophic (COBALT) ecosystem model. To improve our conceptual understanding of the system, we conducted a hindcast simulation from 1980 to 2013. The model was explicitly forced with temporally and spatially varying coastal freshwater discharges from a high-resolution terrestrial hydrological model, thereby affecting salinity, alkalinity, dissolved inorganic carbon, and nutrient concentrations. This represents a substantial improvement over previous GOA modeling attempts. Here, we evaluate the model on seasonal to interannual timescales using the best available inorganic carbon observations. The model was particularly successful in reproducing observed aragonite oversaturation and undersaturation of near-bottom water in May and September, respectively. The largest deficiency in the model is its inability to adequately simulate springtime surface inorganic carbon chemistry, as it overestimates surface dissolved inorganic carbon, which translates into an underestimation of the surface aragonite saturation state at this time. We also use the model to describe the seasonal cycle and drivers of inorganic carbon parameters along the Seward Line transect in under-sampled months. Model output suggests that the majority of the near-bottom water along the Seward Line is seasonally undersaturated with respect to aragonite between June and January, as a result of upwelling and remineralization. Such an extensive period of reoccurring aragonite undersaturation may be harmful to ocean acidification-sensitive organisms. Furthermore, the influence of freshwater not only decreases the aragonite saturation state in coastal surface waters in summer and fall, but it simultaneously decreases the surface partial pressure of carbon dioxide (pCO2), thereby decoupling the aragonite saturation state from pCO2. The full seasonal cycle and geographic extent of the GOA region is under-sampled, and our model results give new and important insights for months of the year and areas that lack in situ inorganic carbon observations.


Sign in / Sign up

Export Citation Format

Share Document