virtual monochromatic imaging
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mark Selles ◽  
Vera H. Stuivenberg ◽  
Ruud H. H. Wellenberg ◽  
Loes van de Riet ◽  
Ingrid M. Nijholt ◽  
...  

Abstract Objective To quantify metal artifact reduction using 130 keV virtual monochromatic imaging (VMI) with and without orthopedic metal artifact reduction (O-MAR) in total hip arthroplasty. Methods Conventional polychromatic images and 130 keV VMI of a phantom with pellets representing bone with unilateral or bilateral prostheses were reconstructed with and without O-MAR on a dual-layer CT. Pellets were categorized as unaffected, mildly affected and severely affected. Results When 130 keV VMI with O-MAR was compared to conventional imaging with O-MAR, a relative metal artifact reduction in CT values, contrast-to-noise (CNR), signal-to-noise (SNR) and noise in mildly affected pellets (67%, 74%, 48%, 68%, respectively; p < 0.05) was observed but no significant relative metal artifact reduction in severely affected pellets. Comparison between 130 keV VMI without O-MAR and conventional imaging with O-MAR showed relative metal artifact reduction in CT values, CNR, SNR and noise in mildly affected pellets (92%, 72%, 38%, 51%, respectively; p < 0.05) but negative relative metal artifact reduction in CT values and noise in severely affected pellets (− 331% and -223%, respectively; p < 0.05), indicating aggravation of metal artifacts. Conclusion Overall, VMI of 130 keV with O-MAR provided the strongest metal artifact reduction.


2021 ◽  
Vol 81 ◽  
pp. 253-261
Author(s):  
Tsukasa Kojima ◽  
Takashi Shirasaka ◽  
Masatoshi Kondo ◽  
Toyoyuki Kato ◽  
Akihiro Nishie ◽  
...  

2020 ◽  
Vol 27 (11) ◽  
pp. 1586-1593
Author(s):  
Haruto Sugawara ◽  
Tomoko Takayanagi ◽  
Takuya Ishikawa ◽  
Yoshiaki Katada ◽  
Rika Fukui ◽  
...  

2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Shigeru Suzuki ◽  
Rika Fukui ◽  
Yuzo Yamamoto ◽  
Suguru Nakayama ◽  
Mayuka Suzuki ◽  
...  

2020 ◽  
Vol 93 (1110) ◽  
pp. 20190675
Author(s):  
Takuya Ishikawa ◽  
Shigeru Suzuki ◽  
Yoshiaki Katada ◽  
Tomoko Takayanagi ◽  
Rika Fukui ◽  
...  

Objective: The purpose of this study was to evaluate the image quality in virtual monochromatic imaging (VMI) at 40 kilo-electron volts (keV) with three-dimensional iterative image reconstruction (3D-IIR). Methods: A phantom study and clinical study (31 patients) were performed with dual-energy CT (DECT). VMI at 40 keV was obtained and the images were reconstructed using filtered back projection (FBP), 50% adaptive statistical iterative reconstruction (ASiR), and 3D-IIR. We conducted subjective and objective evaluations of the image quality with each reconstruction technique. Results: The image contrast-to-noise ratio and image noise in both the clinical and phantom studies were significantly better with 3D-IIR than with 50% ASiR, and with 50% ASiR than with FBP (all, p < 0.05). The standard deviation and noise power spectra of the reconstructed images decreased in the order of 3D-IIR to 50% ASiR to FBP, while the modulation transfer function was maintained across the three reconstruction techniques. In most subjective evaluations in the clinical study, the image quality was significantly better with 3D-IIR than with 50% ASiR, and with 50% ASiR than with FBP (all, p < 0.001). Regarding the diagnostic acceptability, all images using 3D-IIR were evaluated as being fully or probably acceptable. Conclusions: The quality of VMI at 40 keV is improved by 3D-IIR, which allows the image noise to be reduced and structural details to be maintained. Advances in knowledge: The improvement of the image quality of VMI at 40 keV by 3D-IIR may increase the subjective acceptance in the clinical setting.


Sign in / Sign up

Export Citation Format

Share Document