developmental dyscalculia
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 33)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
pp. 108140
Author(s):  
Elisa Castaldi ◽  
Marco Turi ◽  
Guido Marco Cicchini ◽  
Sahawanatou Gassama ◽  
Evelyn Eger

2021 ◽  
pp. 002221942110636
Author(s):  
Saifang Liu ◽  
Chen Cheng ◽  
Peiqian Wu ◽  
Liming Zhang ◽  
Zhengjun Wang ◽  
...  

A number of previous studies have identified cognitive deficits in developmental dyscalculia (DD). Yet, most of these studies were in alphabetic languages, whereas few of them examined Chinese DD. Here, we conducted a study aiming to determine the cognitive factors associated with DD in Chinese children. Five candidate cognitive factors of DD—phonological retrieval, phonological awareness, visual–spatial attention, spatial thinking, and pattern understanding—were studied in the present study. A total of 904 Chinese children aged between 8 and 11 years participated in this study. From the sample, 97 children were identified with DD through tests of arithmetic ability, and 93 age and IQ–matched typically developing children were selected as controls. Logistic regression analysis revealed that phonological retrieval, pattern understanding, visual–spatial attention, and phonological awareness significantly predicted DD, whereas spatial thinking failed to do so. Results of logistic relative weights analysis showed that all five factors explained statistically significant amounts of variance in arithmetic scores. Phonological retrieval had the most influence on DD, followed by pattern understanding, visual–spatial attention, phonological awareness, and spatial thinking. These findings have important clinical implications for diagnosis and intervention of Chinese DD.


2021 ◽  
pp. 095679762199520
Author(s):  
Nirit Fooks ◽  
Bat-Sheva Hadad ◽  
Orly Rubinsten

Although researchers have debated whether a core deficit of nonsymbolic representation of magnitude underlies developmental dyscalculia (DD), research has mostly focused on numerosity processing. We probed the possibility of a general magnitude deficit in individuals with DD and asked whether sensitivity to size varied in contexts of depth ordering and size constancy. We measured full psychometric functions in size-discrimination tasks in 12 participants with DD and 13 control participants. Results showed that although people with DD exhibited veridical perceived magnitude, their sensitivity to size was clearly impaired. In contrast, when objects were embedded in depth cues allowing size-constancy computations, participants with DD demonstrated typical sensitivity to size. These results demonstrate a deficit in the perceptual resolutions of magnitude in DD. At the same time, the finding of an intact size constancy suggests that when magnitude perception is facilitated by implicit mandatory computations of size constancy, this deficit is no longer evident.


2021 ◽  
Author(s):  
Nazife Ayyildiz ◽  
Frauke Beyer ◽  
Sertac Ustun ◽  
Emre H. Kale ◽  
Oyku Mance Calisir ◽  
...  

Developmental dyscalculia (DD) is a neurodevelopmental disorder specific to arithmetic learning even with normal intelligence and age-appropriate education. Difficulties often persist from childhood through adulthood. Underlying neurobiological mechanisms of DD, however, are poorly understood. This study aimed to identify possible structural connectivity alterations in DD. We evaluated 10 children with pure DD (11.3 plus-or-minus sign 0.7 years) and 16 typically developing (TD) peers (11.2 plus-or-minus sign 0.6 years) using diffusion tensor imaging. We first assessed white matter microstructure with tract-based spatial statistics. Then we used probabilistic tractography to evaluate tract lengths and probabilistic connectivity maps in specific regions. At whole brain level, we found no significant microstructural differences in white matter between children with DD and TD peers. Also, seed-based connectivity probabilities did not differ between groups. However, we did find significant differences in regions-of-interest tracts which had previously been related to math ability in children. The major findings of our study were reduced white matter coherence and shorter tract lengths of the left superior longitudinal/arcuate fasciculus and left anterior thalamic radiation in the DD group. Furthermore, lower white matter coherence and shorter pathways corresponded with the lower math performance as a result of the correlation analyses. These results from regional analyses indicate that learning, memory and language-related pathways in the left hemisphere might underlie DD. Keywords: Mathematical learning disability, diffusion tensor imaging, superior longitudinal fasciculus, anterior thalamic radiation, probabilistic tractography, tract-based spatial statistics


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244578
Author(s):  
Gisella Decarli ◽  
Emanuela Paris ◽  
Chiara Tencati ◽  
Chiara Nardelli ◽  
Massimo Vescovi ◽  
...  

It is believed that the approximate estimation of large sets and the exact quantification of small sets (subitizing) are supported by two different systems, the Approximate Number System (ANS) and Object Tracking System (OTS), respectively. It is a current matter of debate whether they are both impaired in developmental dyscalculia (DD), a specific learning disability in symbolic number processing and calculation. Here we tackled this question by asking 32 DD children and 32 controls to perform a series of tasks on visually presented sets, including exact enumeration of small sets as well as comparison of large, uncountable sets. In children with DD, we found poor sensitivity in processing large numerosities, but we failed to find impairments in the exact enumeration of sets within the subitizing range. We also observed deficits in visual short-term memory skills in children with dyscalculia that, however, did not account for their low ANS acuity. Taken together, these results point to a dissociation between quantification skills in dyscalculia, they highlight a link between DD and low ANS acuity and provide support for the notion that DD is a multifaceted disability that covers multiple cognitive skills.


Sign in / Sign up

Export Citation Format

Share Document