fold stability
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Willow Coyote-Maestas ◽  
David Nedrud ◽  
Yungui He ◽  
Daniel Schmidt

A longstanding goal in protein science and clinical genetics is to develop quantitative models of sequence, structure, and function relationships and delineate the mechanisms by which mutations cause disease. Deep Mutational Scanning (DMS) is a promising strategy to map how amino acids contribute to protein structure and function and to advance clinical variant interpretation. Here, we introduce 7,429 single residue missense mutation into the Inward Rectifier K+ channel Kir2.1 and determine how this affects folding, assembly, and trafficking, as well as regulation by allosteric ligands and ion conduction. Our data provide high-resolution information on a cotranslationally-folded biogenic unit, trafficking and quality control signals, and segregated roles of different structural elements in fold-stability and function. We show that Kir2.1 trafficking mutants are underrepresented in variant effect databases, which has implications for clinical practice. By comparing fitness scores with expert-reviewed variant effects, we can predict the pathogenicity of variants of unknown significance and disease mechanisms of know pathogenic mutations. Our study in Kir2.1 provides a blueprint for how multiparametric DMS can help us understand the mechanistic basis of genetic disorders and the structure-function relationships of proteins.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Rita Puglisi ◽  
Gogulan Karunanithy ◽  
D. Flemming Hansen ◽  
Annalisa Pastore ◽  
Piero Andrea Temussi

AbstractMost techniques allow detection of protein unfolding either by following the behaviour of single reporters or as an averaged all-or-none process. We recently added 2D NMR spectroscopy to the well-established techniques able to obtain information on the process of unfolding using resonances of residues in the hydrophobic core of a protein. Here, we questioned whether an analysis of the individual stability curves from each resonance could provide additional site-specific information. We used the Yfh1 protein that has the unique feature to undergo both cold and heat denaturation at temperatures above water freezing at low ionic strength. We show that stability curves inconsistent with the average NMR curve from hydrophobic core residues mainly comprise exposed outliers that do nevertheless provide precious information. By monitoring both cold and heat denaturation of individual residues we gain knowledge on the process of cold denaturation and convincingly demonstrate that the two unfolding processes are intrinsically different.


2021 ◽  
Author(s):  
David Reilley ◽  
Anastassia N. Alexandrova ◽  
Jian Wang ◽  
Nikolay Dokholyan

The pH dependence of enzyme fold stability and catalytic activity is a fundamentally dynamic, structural property which is difficult to study. Computational methods, particularly constant pH molecular dynamics (CpHMD), are the best situated tools for this. However, these often struggle with affordable sampling of sufficiently long timescales, accuracy of pKa prediction, and verification of the structures they generate. We introduce Titr-DMD, an affordable CpHMD method with a protonation state sampler that can be systematically improved, to circumvent these issues. We benchmark the method on a set of proteins with experimentally attested pKa and on the pH triggered conformational change in a staphylococcal nuclease mutant, a rare experimental study of such behavior. Our results show Titr-DMD to be an effective method to study pH coupled protein dynamics. <br>


2021 ◽  
Author(s):  
David Reilley ◽  
Anastassia N. Alexandrova ◽  
Jian Wang ◽  
Nikolay Dokholyan

The pH dependence of enzyme fold stability and catalytic activity is a fundamentally dynamic, structural property which is difficult to study. Computational methods, particularly constant pH molecular dynamics (CpHMD), are the best situated tools for this. However, these often struggle with affordable sampling of sufficiently long timescales, accuracy of pKa prediction, and verification of the structures they generate. We introduce Titr-DMD, an affordable CpHMD method with a protonation state sampler that can be systematically improved, to circumvent these issues. We benchmark the method on a set of proteins with experimentally attested pKa and on the pH triggered conformational change in a staphylococcal nuclease mutant, a rare experimental study of such behavior. Our results show Titr-DMD to be an effective method to study pH coupled protein dynamics. <br>


2021 ◽  
Author(s):  
Rita Puglisi ◽  
Gogulan Karunanithy ◽  
D. Flemming Hansen ◽  
Annalisa Pastore ◽  
Piero Andrea Temussi

AbstractMost techniques allow detection of protein unfolding either by following the behaviour of single reporters or as an averaged all-or-none process. We recently added 2D NMR spectroscopy to the well-established techniques able to obtain information on the process of unfolding using resonances of residues in the hydrophobic core of a protein. Here, we questioned whether an analysis of the individual stability curves from each resonance could provide additional site-specific information. We used the Yfh1 protein that has the unique feature to undergo both cold and heat denaturation at temperatures above water freezing at low ionic strength. We show that stability curves inconsistent with the average NMR curve from hydrophobic core residues mainly comprise exposed outliers that do nevertheless provide precious information. By monitoring both cold and heat denaturation of individual residues we gain knowledge on the process of cold denaturation and convincingly demonstrate that the two unfolding processes are intrinsically different.


2021 ◽  
Author(s):  
David Reilley ◽  
Anastassia N. Alexandrova ◽  
Jian Wang ◽  
Nikolay Dokholyan

The pH dependence of enzyme fold stability and catalytic activity is a fundamentally dynamic, structural property which is difficult to study. Computational methods, particularly constant pH molecular dynamics (CpHMD), are the best situated tools for this. However, these often struggle with affordable sampling of sufficiently long timescales, accuracy of pKa prediction, and verification of the structures they generate. We introduce Titr-DMD, an affordable CpHMD method with a protonation state sampler that can be systematically improved, to circumvent these issues. We benchmark the method on a set of proteins with experimentally attested pKa and on the pH triggered conformational change in a staphylococcal nuclease mutant, a rare experimental study of such behavior. Our results show Titr-DMD to be an effective method to study pH coupled protein dynamics. <br>


2020 ◽  
Author(s):  
Rita Puglisi ◽  
Annalisa Pastore ◽  
Piero Andrea Temussi

Abstract. Most techniques allow detection of protein unfolding either by following the behaviour of single reporters or as an averaged all-or-none process. We recently added 2D NMR spectroscopy to the well-established techniques able to obtain information on the process of unfolding using resonances of residues in the hydrophobic core of a protein. Here, we questioned whether a detailed analysis of the individual stability curves from each resonance could provide additional site-specific information. We used the Yfh1 protein that has the unique feature to undergo both cold and heat denaturation at temperatures above water freezing at low ionic strength. We show that stability curves inconsistent with the average NMR curve from hydrophobic core residues mainly comprise exposed outliers that do nevertheless provide precious information. By monitoring both cold and heat denaturation of individual residues we gain knowledge on the process of cold denaturation and convincingly demonstrate that the two unfolding processes are intrinsically different.


2020 ◽  
Vol 11 ◽  
Author(s):  
Petra Winter ◽  
Stefan Stubenvoll ◽  
Sandra Scheiblhofer ◽  
Isabella A. Joubert ◽  
Lisa Strasser ◽  
...  

2020 ◽  
Author(s):  
Petra Winter ◽  
Stefan Stubenvoll ◽  
Sandra Scheiblhofer ◽  
Isabella A Joubert ◽  
Lisa Strasser ◽  
...  

AbstactIntroductionProtein fold stability has been proposed to represent an intrinsic feature contributing to immunogenicity and immune polarization by influencing the amount of peptide-MHC II complexes (pMHCII). Using in silico prediction, we introduced point mutations in proteins that either increase or decrease their fold-stability without altering immunodominant epitopes or changing the overall structure of the protein. Here, we investigated how modulation of the fold-stability of the grass pollen allergen Phl p 6 affects its ability to stimulate immune responses and T cell polarization.MethodsUsing the MAESTRO software tool, stabilizing or destabilizing mutations were selected and verified by molecular dynamics simulations. The mutants were expressed in E. coli, purified tag-free, and analyzed for thermal stability and resistance to endolysosomal proteases. The resulting peptides were analysed by degradome assay and mass spectrometry. The structure of the most stable mutant protein was obtained by X-ray crystallography. We evaluated the capacity of the mutants to stimulate T cell proliferation in vitro, as well as antibody responses and T cell polarization in vivo in an adjuvant-free BALB/c mouse model.ResultsFour stabilizing and two destabilizing mutations were identified by MAESTRO. Experimentally determined changes in thermal stability compared to the wild type protein ranged from -5 to +14 °C. Destabilization led to faster proteolytic processing in vitro, whereas highly stabilized mutants were degraded very slowly. However, the overall pattern of identified peptides remained very similar. This was confirmed in bone marrow derived dendritic cells that processed and presented the immune dominant epitope from a destabilized mutant more efficiently. In vivo, stabilization resulted in a shift in immune polarization as indicated by higher levels of IgG2a and increased secretion of TH1/TH17 cytokines.ConclusionMAESTRO was very efficient in detecting single point mutations that increase or reduce fold-stability. Thermal stability correlated well with susceptibility to protease resistance and presentation of pMHCII on the surface of dendritic cells in vitro. This change in processing kinetics significantly influenced the polarization of T cell responses in vivo. Modulating the fold-stability of proteins thus has the potential to optimize and polarize immune responses, which opens the door to more efficient design of molecular vaccines.


Sign in / Sign up

Export Citation Format

Share Document