unknown significance
Recently Published Documents


TOTAL DOCUMENTS

500
(FIVE YEARS 259)

H-INDEX

26
(FIVE YEARS 6)

2022 ◽  
Vol 20 (6) ◽  
pp. 164-170
Author(s):  
P. A. Gervas ◽  
A. Yu. Molokov ◽  
A. A. Zarubin ◽  
A. A. Ponomareva ◽  
N. N. Babyshkina ◽  
...  

Background. The identification of the ethnospecific mutations associated with hereditary breast cancer remains challenging. Next generation sequencing (Ngs) technology fully enables the compilation of germline variants associated with the risk for inherited diseases. Despite the success of the Ngs, up to 20 % of molecular tests report genetic variant of unknown significance (Vus) or novel variants that have never been previously described and their clinical significances are unknown. To obtain extended information about the variants of the unknown significance, it is necessary to use an alternative approach for the analysis of the Ngs data. To obtain extended characteristic about the unknown significance variants, it is necessary to search for additional tools for the analysis of the Ngs data. Material and methods. We reclassified the mutation of the unknown significance using the activedrivedb database that assessed the effect of mutations on sites of post-translational modifications, and the proteinpaint tool that complemented the existing cancer genome portals and provided a comprehensive and intuitive view of cancer genomic data. Results. In this study, we report a 44-year-old tuvinian woman with a family history of breast cancer. Based on the Ngs data, mutational analysis revealed the presence of the lrg_321t1: c.80c>t heterozygous variant in exon 2, which led to the proline to leucine change at codon 27 of the protein. In the dbpubmed database, this mutation was determined as unknown significance due to data limitation. According to the data of the activedriverdb tool, this mutation is located distally at the site of post-translational protein modification, which is responsible for binding to kinases that regulate genes of the cell cycle, etc. (atm, chek2, cdk, mapk). In accordance with proteinpaint tool, the lrg_321t1: c.80c>t mutation is located in functionally specialized transactivation domains and codon of the tp53 gene, where the pathogenic mutation associated with li-Fraumeni syndrome has been earlier described. Conclusion. This report is the first to describe a new variant in the tp53 gene (rs1555526933), which is likely to be associated with hereditary cancer-predisposing syndrome, including li-Fraumeni syndrome, in a tuvinian Bc patient with young-onset and familial Bc.


2022 ◽  
pp. practneurol-2021-002989
Author(s):  
Thanuja Dharmadasa ◽  
Jakub Scaber ◽  
Evan Edmond ◽  
Rachael Marsden ◽  
Alexander Thompson ◽  
...  

A minority (10%–15%) of cases of amyotrophic lateral sclerosis (ALS), the most common form of motor neurone disease (MND), are currently attributable to pathological variants in a single identifiable gene. With the emergence of new therapies targeting specific genetic subtypes of ALS, there is an increasing role for routine genetic testing for all those with a definite diagnosis. However, potential harm to both affected individuals and particularly to asymptomatic relatives can arise from the indiscriminate use of genetic screening, not least because of uncertainties around incomplete penetrance and variants of unknown significance. The most common hereditary cause of ALS, an intronic hexanucleotide repeat expansion in C9ORF72, may be associated with frontotemporal dementia independently within the same pedigree. The boundary of what constitutes a possible family history of MND has therefore extended to include dementia and associated psychiatric presentations. Notwithstanding the important role of clinical genetics specialists, all neurologists need a basic understanding of the current place of genetic testing in MND, which holds lessons for other neurological disorders.


2022 ◽  
Author(s):  
Yohei Harada ◽  
Akemi Sato ◽  
Mitsugu Araki ◽  
Shigeyuki Matsumoto ◽  
Yuta Isaka ◽  
...  

Abstract Purpose Dealing with variants of unknown significance (VUS) is an important issue in the clinical application of NGS-based cancer gene panel tests. We detected a novel ERBB2 extracellular domain VUS, c.1157A > G p.(E401G), in a cancer gene panel test. Since the mechanisms of activation by ERBB2 extracellular domain (ECD) variants are not fully understood, we aimed to clarify those mechanisms and the biological functions of ERBB2 E401G. Methods ERBB2 E401G was selected as VUS for analysis because multiple software tools predicted its pathogenicity. We prepared ERBB2 expression vectors with the E401G variant as well as vectors with S310F and E321G, which are known to be activating mutations. On the basis of wild-type ERBB2 or mutant ERBB2 expression in cell lines without ERBB2 amplification or variants, we evaluated the phosphorylation of human epidermal growth factor receptor 2 and related proteins, and investigated with molecular dynamics (MD) simulation the mechanisms conferred by the variants. The biological effects of ERBB2 E401G were also investigated, both in vitro and in vivo. Results We found that ERBB2 E401G enhances C-terminal phosphorylation in a way similar to S310F. MD simulation analysis revealed that these variants maintain the stability of the EGFR-HER2 heterodimer in a ligand-independent manner. Moreover, ERBB2 E401G-transduced cells showed an increased invasive capacity in vitro and an increased tumor growth capacity in vivo. Conclusion Our results provide important information on the activating mechanisms of ERBB2 extracellular domain (ECD) variants and illustrate a model workflow integrating wet and dry bench processes for the analysis of VUS detected with cancer gene panel tests.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0260436
Author(s):  
Susann Dressel-Böhm ◽  
Henning Richter ◽  
Patrick R. Kircher ◽  
Francesca Del Chicca

Many pathologies can occur in the periportal space and manifest as fluid accumulation, visible in Computed tomography (CT) images as a circumferential region of low attenuation around the intrahepatic portal vessels, called periportal halo (PPH). This finding is associated with different types of hepatic and extra-hepatic disease in humans and remains a non-specific sign of unknown significance in veterinary literature. The aim of this study was to investigate the prevalence of PPH in a population of patients undergoing CT examination and to assess the presence of lesions related to hepatic and extra-hepatic disease in presence of PPH. CT studies including the cranial abdomen of dogs and cats performed over a 5-year period were retrospectively reviewed. The prevalence of PPH was 15% in dogs and 1% in cats. 143 animals were included and the halo was classified as mild, moderate and severe, respectively in 51%, 34% and 15% of animals. The halo distribution was generalized in 79 cases, localized along the second generation of portal branches in 63, and along the first generation only in one. Hepatic disease was present in 58/143 and extra-hepatic disease in 110/143 of the cases. Main cause of hepatic (36%) and extra-hepatic disease (68%) was neoplasia. Associations between halo grades and neoplasia revealed to be not statistically significant (p = 0.057). In 7% of animals the CT examination was otherwise unremarkable. PPH is a non-specific finding, occurring in presence of a variety of diseases in the examined patient population.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 129
Author(s):  
Rosana Blanco-Máñez ◽  
Miguel Armengot-Carceller ◽  
Teresa Jaijo ◽  
Francisco Vera-Sempere

Diagnosis testing for primary ciliary dyskinesia (PCD) requires a combination of investigations that includes study of ciliary beat pattern by high-speed video-microscopy, genetic testing and assessment of the ciliary ultrastructure by transmission electron microscopy (TEM). Historically, TEM was considered to be the “gold standard” for the diagnosis of PCD. However, with the advances in molecular genetic techniques, an increasing number of PCD variants show normal ultrastructure and cannot be diagnosed by TEM. During ultrastructural assessment of ciliary biopsies of patients with suspicion of PCD, we observed an axonemal defect not previously described that affects peripheral doublets tilting. To further characterize this defect of unknown significance, we studied the ciliary axonemes by TEM from both PCD-confirmed patients and patients with other sino-pulmonary diseases. We detected peripheral doublets tilting in all the PCD patients, without any significant difference in the distribution of ciliary beat pattern or mutated gene. This defect was also present in those patients with normal ultrastructure PCD subtypes. We believe that the performance of axonemal asymmetry analysis would be helpful to enhance diagnosis of PCD.


2022 ◽  
Author(s):  
Willow Coyote-Maestas ◽  
David Nedrud ◽  
Yungui He ◽  
Daniel Schmidt

A longstanding goal in protein science and clinical genetics is to develop quantitative models of sequence, structure, and function relationships and delineate the mechanisms by which mutations cause disease. Deep Mutational Scanning (DMS) is a promising strategy to map how amino acids contribute to protein structure and function and to advance clinical variant interpretation. Here, we introduce 7,429 single residue missense mutation into the Inward Rectifier K+ channel Kir2.1 and determine how this affects folding, assembly, and trafficking, as well as regulation by allosteric ligands and ion conduction. Our data provide high-resolution information on a cotranslationally-folded biogenic unit, trafficking and quality control signals, and segregated roles of different structural elements in fold-stability and function. We show that Kir2.1 trafficking mutants are underrepresented in variant effect databases, which has implications for clinical practice. By comparing fitness scores with expert-reviewed variant effects, we can predict the pathogenicity of variants of unknown significance and disease mechanisms of know pathogenic mutations. Our study in Kir2.1 provides a blueprint for how multiparametric DMS can help us understand the mechanistic basis of genetic disorders and the structure-function relationships of proteins.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Meng-Ko Tsai ◽  
Chao-Hung Lai ◽  
Chris Tsai ◽  
Guan-Liang Chen

Community-acquired pneumonia caused by Mycoplasma pneumoniae or Chlamydia pneumoniae is usually mild. Mycoplasma pneumoniae-related and C. pneumoniae-related acute respiratory distress syndromes (ARDSs) are rare. Moreover, to our knowledge, there are no published reports on ARDS caused by M. pneumoniae and C. pneumoniae coinfection. Here, we report a case of an immunocompetent young woman who was co-infected with M. pneumoniae and C. pneumoniae and was started on treatment with piperacillin and clarithromycin. Two days later, she developed ARDS. She recovered rapidly following a change of antibiotic treatment to levofloxacin and was discharged on day 12. We conducted exome sequencing followed by alternative filtering to search for candidate ARDS-related genes. We identified an intronic variant of unknown significance within leucine-rich repeat-containing 16A (LRRC16A), a gene previously identified as a significant locus for platelet count with a possible role in ARDS. This is a rare case of ARDS in a young adult caused by M. pneumoniae and C. pneumoniae coinfection. This case suggests that ARDS in young adults may be correlated with variants in LRRC16A. This requires confirmation by further case reports.


2021 ◽  
Vol 11 ◽  
Author(s):  
Katrin E. Hostettler ◽  
Elisa Casañas Quintana ◽  
Michael Tamm ◽  
Spasenija Savic Prince ◽  
Gregor Sommer ◽  
...  

Langerhans cell histiocytosis (LCH) commonly co-occurs with additional myeloid malignancies. The introduction of targeted therapies, blocking “driver” mutations (e.g., BRAF V600E), enabled long-term remission in patients with LCH. The effect of BRAF inhibition on the course and the prognosis of co-existing clonal hematopoiesis is poorly understood. We report on a 61-year-old patient with systemic BRAF V600E positive LCH and concomitant BRAF wild-type (wt) clonal cytopenia of unknown significance (CCUS) with unfavorable somatic mutations including loss of function (LOF) of NF1. While manifestations of LCH improved after blocking BRAF by dabrafenib treatment, the BRAF wt CCUS progressed to acute myeloid leukemia (AML). The patient eventually underwent successful allogeneic hematopoietic stem cell transplantation (HSCT). We performed an in-depth analyzes of the clonal relationship of CCUS and the tissue affected by LCH by using next-generation sequencing (NGS). The findings suggest activation of the mitogen-activated protein (MAP) kinase pathway in the CCUS clone due to the presence of the RAS deregulating NF1 mutations and wt BRAF, which is reportedly associated with paradoxical activation of CRAF and hence MEK. Patients with LCH should be carefully screened for potential additional clonal hematological diseases. NGS can help predict outcome of the latter in case of BRAF inhibition. Blocking the MAP kinase pathway further downstream (e.g., by using MEK inhibitors) or allogeneic HSCT may be options for patients at risk.


2021 ◽  
Author(s):  
Laura Kind ◽  
Arne Raasakka ◽  
Janne Molnes ◽  
Ingvild Aukrust ◽  
Lise Bjørkhaug ◽  
...  

Hepatocyte nuclear factor 1A (HNF-1A) is a transcription factor expressed in several embryonic and adult tissues, modulating expression of numerous target genes. Pathogenic variants in the HNF1A gene cause maturity-onset diabetes of the young 3 (MODY3 or HNF1A MODY), characterized by dominant inheritance, age of onset before 25-35 years of age, and pancreatic β-cell dysfunction. A precise diagnosis alters management as insulin can be exchanged with sulfonylurea tablets and genetic counselling differs from polygenic forms of diabetes. More knowledge on mechanisms of HNF-1A function and the level of pathogenicity of the numerous HNF1A variants identified by exome sequencing is required for precise diagnostics. Here, we have structurally and biophysically characterized an HNF-1A protein containing both the DNA binding domain and the dimerization domain. We also present a novel approach to characterize HNF-1A variants. The folding and DNA binding capacity of two established MODY3 HNF-1A variant proteins (P112L, R263C) and one variant of unknown significance (N266S) were determined. All three variants showed reduced functionality compared to the wild-type protein. While the R263C and N266S variants displayed reduced binding to an HNF-1A target promoter, the P112L variant was unstable in vitro and in cells. Our results support and mechanistically explain disease causality for all investigated variants and allow for the dissection of structurally unstable and DNA binding defective variants. This points towards structural and biochemical investigation of HNF-1A being a valuable aid in reliable variant classification needed for precision diagnostics and management.


2021 ◽  
Vol 22 (24) ◽  
pp. 13602
Author(s):  
Kepa B. Uribe ◽  
Kevin Chemello ◽  
Asier Larrea-Sebal ◽  
Asier Benito-Vicente ◽  
Unai Galicia-Garcia ◽  
...  

Background: Gain of function (GOF) mutations of PCSK9 cause autosomal dominant familial hypercholesterolemia as they reduce the abundance of LDL receptor (LDLR) more efficiently than wild-type PCSK9. In contrast, PCSK9 loss of function (LOF) variants are associated with a hypocholesterolemic phenotype. Dozens of PCSK9 variants have been reported, but most remain of unknown significance since their characterization has not been conducted. Objective: Our aim was to make the most comprehensive assessment of PCSK9 variants and to determine the simplest approach for the classification of these variants. Methods: The expression, maturation, secretion, and activity of nine well-established PCSK9 variants were assessed in transiently transfected HEK293 cells by Western blot and flow cytometry. Their extracellular activities were determined in HepG2 cells incubated with the purified recombinant PCSK9 variants. Their binding affinities toward the LDLR were determined by solid-phase immunoassay. Results: LDLR expression increased when cells were transfected with LOF variants and reduced when cells were transfected with GOF variants compared with wild-type PCSK9. Extracellular activities measurements yielded exactly similar results. GOF and LOF variants had increased, respectively reduced, affinities for the LDLR compared with wild-type PCSK9 with the exception of one GOF variant (R218S) that showed complete resistance to inactivation by furin. All variants were expressed at similar levels and underwent normal maturation and secretion patterns except for two LOF and two GOF mutants. Conclusions: We propose that transient transfections of HEK293 cells with a plasmid encoding a PCSK9 variant followed by LDLR expression assessment by flow cytometry is sufficient to reliably determine its GOF or LOF status. More refined experiments should only be used to determine the underlying mechanism(s) at hand.


Sign in / Sign up

Export Citation Format

Share Document