object individuation
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 15)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Vladislav Ayzenberg ◽  
Samoni Nag ◽  
Amy Krivoshik ◽  
Stella F. Lourenco

To accurately represent an object, it must be individuated from the surrounding objects and then classified with the appropriate category or identity. To this end, adults flexibly weight different visual cues when perceiving objects. However, less is known about whether, and how, the weighting of visual object information changes over development. The current study examined how children use different types of information— spatial (e.g., left/right location) and featural (e.g., color)—in different object tasks. In Experiment 1, we tested whether infants and preschoolers extract both the spatial and featural properties of objects, and, importantly, how these cues are weighted when pitted against each other. We found that infants relied primarily on spatial cues and neglected featural cues. By contrast, preschoolers showed the opposite pattern of weighting, placing greater weight on featural information. In Experiment 2, we tested the hypothesis that the developmental shift from spatial to featural weighting reflects a shift from a priority on object individuation (how many objects) in infancy to object classification (what are the objects) at preschool age. Here, we found that preschoolers weighted spatial information more than features when the task required individuating objects without identifying them, consistent with a specific role for spatial information in object individuation. We discuss the relevance of spatial-featural weighting in relation to developmental changes in children’s object representations.


2021 ◽  
Vol 65 ◽  
pp. 101627
Author(s):  
Alan Langus ◽  
Barbara Höhle
Keyword(s):  

2021 ◽  
Vol 21 (9) ◽  
pp. 2192
Author(s):  
Yang Lei ◽  
Chunmiao Lou ◽  
Xiaorong Cheng ◽  
Xianfeng Ding ◽  
Zhao Fan

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chiara F. Tagliabue ◽  
Sara Assecondi ◽  
Giulia Cristoforetti ◽  
Veronica Mazza

AbstractA decline in visuospatial Working Memory (vWM) is a hallmark of cognitive aging across various tasks, and facing this decline has become the target of several studies. In the current study we tested whether older adults can benefit from task repetition in order to improve their performance in a vWM task. While learning by task repetition has been shown to improve vWM performance in young adulthood, little is known on whether a similar enhancement can be achieved also by the aging population. By combining different behavioral and electrophysiological measures, we investigated whether practicing a specific task (delayed match-to-sample judgement) over four consecutive sessions could improve vWM in healthy aging, and which are the neurophysiological and cognitive mechanisms modulated by learning. Behavioral data revealed that task repetition boosted performance in older participants, both in terms of sensitivity to change (as revealed by d’ measures) as well as capacity estimate (as measured by k values). At the electrophysiological level, results indicated that only after task repetition both target individuation (as evidenced by the N2pc) and vWM maintenance (as reflected by the CDA) were modulated by target numerosity. Our results suggest that repetition learning is effective in enhancing vWM in aging and acts through modifications at different stages of stimulus processing.


2020 ◽  
Vol 20 (11) ◽  
pp. 650
Author(s):  
Chiara Tagliabue ◽  
Sara Assecondi ◽  
Giulia Cristoforetti ◽  
Veronica Mazza

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rosa Rugani ◽  
Maria Loconsole ◽  
Francesca Simion ◽  
Lucia Regolin

Abstract Day-old domestic chicks approach the larger of two groups of identical objects, but in a 3 vs 4 comparison, their performance is random. Here we investigated whether adding individually distinctive features to each object would facilitate such discrimination. Chicks reared with 7 objects were presented with the operation 1 + 1 + 1 vs 1 + 1 + 1 + 1. When objects were all identical, chicks performed randomly, as expected (Experiment 1). In the remaining experiments, objects differed from one another due to additional features. Chicks succeeded when those features were differently oriented segments (Experiment 2) but failed when the features were arranged to depict individually different face-like displays (Experiment 3). Discrimination was restored if the face-like stimuli were presented upside-down, disrupting global processing (Experiment 4). Our results support the claim that numerical discrimination in 3 vs 4 comparison benefits from the presence of distinctive features that enhance object individuation due to individual processing. Interestingly, when the distinctive features are arranged into upright face-like displays, the process is susceptible to global over local interference due to configural processing. This study was aimed at assessing whether individual object processing affects numerical discrimination. We hypothesise that in humans similar strategies aimed at improving performance at the non-symbolic level may have positive effects on symbolic mathematical abilities.


Author(s):  
David Melcher ◽  
Christoph Huber-Huber ◽  
Andreas Wutz

Abstract Ensemble perception refers to the ability to report attributes of a group of objects, rather than focusing on only one or a few individuals. An everyday example of ensemble perception is the ability to estimate the numerosity of a large number of items. The time course of ensemble processing, including that of numerical estimation, remains a matter of debate, with some studies arguing for rapid, “preattentive” processing and other studies suggesting that ensemble perception improves with longer presentation durations. We used a forward-simultaneous masking procedure that effectively controls stimulus durations to directly measure the temporal dynamics of ensemble estimation and compared it with more precise enumeration of individual objects. Our main finding was that object individuation within the subitizing range (one to four items) took about 100–150 ms to reach its typical capacity limits, whereas estimation (six or more items) showed a temporal resolution of 50 ms or less. Estimation accuracy did not improve over time. Instead, there was an increasing tendency, with longer effective durations, to underestimate the number of targets for larger set sizes (11–35 items). Overall, the time course of enumeration for one or a few single items was dramatically different from that of estimating numerosity of six or more items. These results are consistent with the idea that the temporal resolution of ensemble processing may be as rapid as, or even faster than, individuation of individual items, and support a basic distinction between the mechanisms underlying exact enumeration of small sets (one to four items) from estimation.


2020 ◽  
Vol 197 ◽  
pp. 104868 ◽  
Author(s):  
Gisella Decarli ◽  
Laura Franchin ◽  
Manuela Piazza ◽  
Luca Surian

Sign in / Sign up

Export Citation Format

Share Document