uric acid dihydrate
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 1)

Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 373 ◽  
Author(s):  
Alina R. Izatulina ◽  
Vladislav V. Gurzhiy ◽  
Maria G. Krzhizhanovskaya ◽  
Nikita V. Chukanov ◽  
Taras L. Panikorovskii

Single crystals and powder samples of uric acid and uric acid dihydrate, known as uricite and tinnunculite biominerals, were extracted from renal stones and studied using single-crystal and powder X-ray diffraction (SC and PXRD) at various temperatures, as well as IR spectroscopy. The results of high-temperature PXRD experiments revealed that the structure of uricite is stable up to 380 °C, and then it loses crystallinity. The crystal structure of tinnunculite is relatively stable up to 40 °C, whereas above this temperature, rapid release of H2O molecules occurs followed by the direct transition to uricite phase without intermediate hydration states. SCXRD studies and IR spectroscopy data confirmed the similarity of uricite and tinnunculite crystal structures. SCXRD at low temperatures allowed us to determine the dynamics of the unit cells induced by temperature variations. The thermal behavior of uricite and tinnunculite is essentially anisotropic; the structures not only expand, but also contract with temperature increase. The maximal expansion occurs along the unit cell parameter of 7 Å (b in uricite and a in tinnunculite) as a result of the shifts of chains of H-bonded uric acid molecules and relaxation of the π-stacking forces, the weakest intermolecular interactions in these structures. The strongest contraction in the structure of uricite occurs perpendicular to the (101) plane, which is due to the orthogonalization of the monoclinic angle. The structure of tinnunculite also contracts along the [010] direction, which is mostly due to the stretching mechanism of the uric acid chains. These phase transitions that occur within the range of physiological temperatures emphasize the particular importance of the structural studies within the urate system, due to their importance in terms of human health. The removal of supersaturation in uric acid in urine at the initial stages of stone formation can occur due to the formation of metastable uric acid dihydrate in accordance with the Ostwald rule, which would serve as a nucleus for the subsequent growth of the stone at further formation stages; afterward, it irreversibly dehydrates into anhydrous uric acid.


CrystEngComm ◽  
2014 ◽  
Vol 16 (31) ◽  
pp. 7278-7284 ◽  
Author(s):  
Janeth B. Presores ◽  
Jennifer A. Swift

Various crystalline phases of uric acid are frequently identified components of human kidney stones, including anhydrous uric acid (UA) and uric acid dihydrate (UAD).


2013 ◽  
Vol 566 ◽  
pp. 211-213 ◽  
Author(s):  
Galina Sádovská ◽  
Pavla Honcová ◽  
Zdeněk Sádovský

2010 ◽  
Vol 39 (5) ◽  
pp. 357-360 ◽  
Author(s):  
Walter Ludwig Strohmaier ◽  
Jürgen Seilnacht ◽  
Gernot Schubert

2010 ◽  
Vol 10 (8) ◽  
pp. 3340-3347 ◽  
Author(s):  
Amanuel Z. Zellelow ◽  
Melat Abiye ◽  
Dorothy A. Fink ◽  
Catherine E. Ford ◽  
Kun-Hae Kim ◽  
...  

2010 ◽  
Vol 10 (1) ◽  
pp. 418-425 ◽  
Author(s):  
Amanuel Z. Zellelow ◽  
Kun-Hae Kim ◽  
Ryan E. Sours ◽  
Jennifer A. Swift

2003 ◽  
Vol 2 (1) ◽  
pp. 79
Author(s):  
W. Strohmaier ◽  
Schubert ◽  
Seilnacht

2000 ◽  
Vol 354 (1-2) ◽  
pp. 7-13 ◽  
Author(s):  
Zhonghua Wang ◽  
Jürgen Seidel ◽  
Gert Wolf ◽  
Erich Königsberger

Sign in / Sign up

Export Citation Format

Share Document