dissolution enthalpies
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 470
Author(s):  
Josip Požar ◽  
Marija Cvetnić ◽  
Andrea Usenik ◽  
Nikola Cindro ◽  
Gordan Horvat ◽  
...  

The binding of alkali metal cations with two tertiary-amide lower-rim calix[4]arenes was studied in methanol, N,N-dimethylformamide, and acetonitrile in order to explore the role of triazole and glucose functionalities in the coordination reactions. The standard thermodynamic complexation parameters were determined microcalorimetrically and spectrophotometrically. On the basis of receptor dissolution enthalpies and the literature data, the enthalpies for transfer of reactants and products between the solvents were calculated. The solvent inclusion within a calixarene hydrophobic basket was explored by means of 1H NMR spectroscopy. Classical molecular dynamics of the calixarene ligands and their complexes were carried out as well. The affinity of receptors for cations in methanol and N,N-dimethylformamide was quite similar, irrespective of whether they contained glucose subunits or not. This indicated that sugar moieties did not participate or influence the cation binding. All studied reactions were enthalpically controlled. The peak affinity of receptors for sodium cation was noticed in all complexation media. The complex stabilities were the highest in acetonitrile, followed by methanol and N,N-dimethylformamide. The solubilities of receptors were greatly affected by the presence of sugar subunits. The medium effect on the affinities of calixarene derivatives towards cations was thoroughly discussed regarding the structural properties and solvation abilities of the investigated solvents.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4047
Author(s):  
Valeriia Baranauskaite ◽  
Maria Belysheva ◽  
Olga Pestova ◽  
Yuri Anufrikov ◽  
Mikhail Skripkin ◽  
...  

Thermodynamic data on the properties of the water-based electrolyte systems are very valuable for fundamental physical chemistry and for industrial applications. The missing data both on the dilution and dissolution enthalpies for the ternary CsCl−MgCl2−H2O mixed electrolyte system were investigated by means of the calorimetry method. The dilution calorimetry was performed at 298 K for the set of solutions from diluted to concentrated at constant ratio Cs+/Mg2+=1.8. The relative partial molar enthalpies, ideal, total, and excess ones were calculated. By means of the dissolution calorimetry, the standard enthalpies of formation, the enthalpies, and entropies for the double salt formation from simple salts were evaluated. The results obtained indicate that entropy as the major factor affecting the formation of the joint compound, both in the liquid and solid phases. These data can be implemented in thermodynamic databases and allow for accurate thermodynamic calculations for the salts extraction from natural water sources and for its possible application as thermochemical energy storage.


2020 ◽  
Vol 315 ◽  
pp. 113813
Author(s):  
Fei Yuan ◽  
Yilin Zhang ◽  
Jiangtao Song ◽  
Long Li ◽  
Yafei Guo ◽  
...  

Author(s):  
S.N. Solovyev ◽  
M.A. Krusheva ◽  
A.A. Gurov ◽  
V. Aiguzhin

The enthalpy of the fullerene C60 dissolution in carbon disulfide CS2 at 298.15 K was measured in a calorimeter with an isothermal shell. The value of the standard enthalpy of the fullerene C60 dissolution in this substance was found. Standard thermodynamic functions of fullerene C60 dissolution in benzene, chlorobenzene, bromobenzene, carbon disulfide, toluene, o-xylene, and o-dichlorobenzene at 298.15 K were determined based on the results of thermometric measurements and theoretical data. The standard thermodynamic functions have also been determined for toluene, o-xylene, and o-dichlorobenzene at temperatures of 288.15 and 308.15 K. The possible causes of the abnormal temperature dependence of the fullerene C60 solubility in some solvents, as well as sign changes in their dissolution enthalpies, in the temperature range of 288.15--308.15 K have been discussed


Author(s):  
Dylan Sures ◽  
G. P. Nagabhushana ◽  
Alexandra Navrotsky ◽  
May Nyman

Ion association is an important process in aqueous dissolution, precipitation, and crystallization of ionic inorganic, organic, and biological materials. Polyoxometalates (POMs) are good model compounds for understanding the complex relationships between lattice energy, ion-pairing in solution, and salt solubility. Here we perform calorimetric measurements to elucidate trends in cluster stability, lattice energy, and ion-pairing behavior studies of simple hexatantalate salts in neat water, parent hydroxide solutions, and molybdate melts, extending previous studies on the isostructural hexaniobates. High temperature calorimetry of alkali salts of hexatantalate reveals that the enthalpies of formation from oxides of the K, Rb, and Cs salts are more similar to each other than they are for their niobate analogues and that the tantalate cluster is energetically less stable than hexaniobate. Aqueous dissolution calorimetry reveals that the cesium salt of hexatantalate has a similar concentration dependence on its dissolution enthalpy to that of hexaniobate. However, unlike rubidium hexaniobate, rubidium hexatantalate also exhibits increased concentration dependence, indicating that hextantalate can undergo increased ion-pairing with alkali salts other than cesium, despite the dilute environments studied. Dissolution enthalpies of POM salts in the parent alkali hydroxides shows that protonation of clusters stabilizes lattices even more than the strongly associating heavy alkalis do. Additionally, neither weak nor strong lattice ion associations necessarily correlates with respectively high or low aqueous solubility. These studies illuminate the importance of considering ion-pairing among the interrelated processes in the aqueous dissolution of ionic salts, that can be extended to serving as a model of cation association to metal oxide surfaces.


2014 ◽  
Vol 113 ◽  
pp. 67-76 ◽  
Author(s):  
Helena Parviainen ◽  
Arno Parviainen ◽  
Tommi Virtanen ◽  
Ilkka Kilpeläinen ◽  
Patrik Ahvenainen ◽  
...  

2011 ◽  
Vol 121-126 ◽  
pp. 175-180
Author(s):  
Shao Mei Ma ◽  
Sheng Fu Wu ◽  
Zeng Wei Huang ◽  
An Ping Liao ◽  
Ai Qun Yuan

Plate shape NaZnPO4·H2O was synthesized by solid-state reaction at low temperature and characterized by X-Ray Diffraction, Scanning electron microscope and elemental analysis. Thermochemical study was performed with an isoperibol solution calorimeter. Based on Hess’s law, thermochemical cycl was designed to determine the dissolution enthalpies of reactants and products using a solution-reaction isoperibol calorimeter at 298.15 K, and the molar reaction enthalpy was calculated on the basis of above dissolution enthalpies. The results show that the obtained product is plate shape NaZnPO4·H2O. The standard molar formation enthalpy of the NaZnPO4·H2O is ΔfHm [NaZnPO4·H2O,s]= -1967.18 ± 0.69 kJ•mol-1.


Sign in / Sign up

Export Citation Format

Share Document