primitive model
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 14)

H-INDEX

45
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
I. Nezbeda

Dipolar versions of two qualitatively different types of simple short range model fluids which exhibit the phenomenon of hydrogen bonding and which could thus serve as a reference in equations of state for associating fluids have been considered: the primitive model of water descending from the TIP4P model and the fluid of hard tetrahedra. The hydrogen bonding structure exhibited by the latter model results from purely repulsive interactions whereas in the first model the “hydrogen bonding interaction” is explicitly incorporated in the model. Since the water molecules bear a strong dipole moment, the effect of the added dipole-dipole interaction on the structure of the two short-range models is therefore examined considering them both in the full and screened dipole-dipole modifications. It is found that the hydrogen bonding structure in the primitive model resulting from the site-site interactions is so strong that the additional dipole-dipole interaction has only a marginal effect on its structure and contributes thus only to the internal energy. On the contrary, even only a weak dipole-dipole interaction destroys the original hydrogen bonding structure of the hard tetrahedron fluid; to preserve it, a screened dipole-dipole interaction has to be used in the equation of state development.


2021 ◽  
Vol 154 (12) ◽  
pp. 124504
Author(s):  
P. Cats ◽  
R. Evans ◽  
A. Härtel ◽  
R. van Roij

2021 ◽  
Vol 24 (2) ◽  
pp. 23801
Author(s):  
L. B. Bhuiyan

Structure and thermodynamics in restricted primitive model electrolytes are examined using three recently developed versions of a linear form of the modified Poisson-Boltzmann equation. Analytical expressions for the osmotic coefficient and the electrical part of the mean activity coefficient are obtained and the results for the osmotic and the mean activity coefficients are compared with that from the more established mean spherical approximation, symmetric Poisson-Boltzmann, modified Poisson-Boltzmann theories, and available Monte Carlo simulation results. The linear theories predict the thermodynamics to a remarkable degree of accuracy relative to the simulations and are consistent with the mean spherical approximation and modified Poisson-Boltzmann results. The predicted structure in the form of the radial distribution functions and the mean electrostatic potential also compare well with the corresponding results from the formal theories. The excess internal energy and the electrical part of the mean activity coefficient are shown to be identical analytically for the mean spherical approximation and the linear modified Poisson-Boltzmann theories.


RSC Advances ◽  
2020 ◽  
Vol 10 (64) ◽  
pp. 39017-39025
Author(s):  
Chandra N. Patra

Size and charge correlations in spherical electric double layers are investigated through Monte Carlo simulations and density functional theory, through a solvent primitive model representation.


Sign in / Sign up

Export Citation Format

Share Document