hydration shells
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 32)

H-INDEX

34
(FIVE YEARS 4)

2021 ◽  
Vol 118 (47) ◽  
pp. e2108568118
Author(s):  
Serena R. Alfarano ◽  
Simone Pezzotti ◽  
Christopher J. Stein ◽  
Zhou Lin ◽  
Federico Sebastiani ◽  
...  

The double layer at the solid/electrolyte interface is a key concept in electrochemistry. Here, we present an experimental study combined with simulations, which provides a molecular picture of the double-layer formation under applied voltage. By THz spectroscopy we are able to follow the stripping away of the cation/anion hydration shells for an NaCl electrolyte at the Au surface when decreasing/increasing the bias potential. While Na+ is attracted toward the electrode at the smallest applied negative potentials, stripping of the Cl− hydration shell is observed only at higher potential values. These phenomena are directly measured by THz spectroscopy with ultrabright synchrotron light as a source and rationalized by accompanying molecular dynamics simulations and electronic-structure calculations.


2021 ◽  
Vol 22 (21) ◽  
pp. 11969
Author(s):  
Nikita V. Penkov

Despite more than a century of research on the hydration of biomolecules, the hydration of carbohydrates is insufficiently studied. An approach to studying dynamic hydration shells of carbohydrates in aqueous solutions based on terahertz time-domain spectroscopy assay is developed in the current work. Monosaccharides (glucose, galactose, galacturonic acid) and polysaccharides (dextran, amylopectin, polygalacturonic acid) solutions were studied. The contribution of the dissolved carbohydrates was subtracted from the measured dielectric permittivities of aqueous solutions based on the corresponding effective medium models. The obtained dielectric permittivities of the water phase were used to calculate the parameters describing intermolecular relaxation and oscillatory processes in water. It is established that all of the analyzed carbohydrates lead to the increase of the binding degree of water. Hydration shells of monosaccharides are characterized by elevated numbers of hydrogen bonds and their mean energies compared to undisturbed water, as well as by elevated numbers and the lifetime of free water molecules. The axial orientation of the OH(4) group of sugar facilitates a wider distribution of hydrogen bond energies in hydration shells compared to equatorial orientation. The presence of the carboxylic group affects water structure significantly. The hydration of polysaccharides is less apparent than that of monosaccharides, and it depends on the type of glycosidic bonds.


2021 ◽  
Vol 22 (20) ◽  
pp. 11089
Author(s):  
Nadezda A. Penkova ◽  
Mars G. Sharapov ◽  
Nikita V. Penkov

Hydration plays a fundamental role in DNA structure and functioning. However, the hydration shell has been studied only up to the scale of 10–20 water molecules per nucleotide. In the current work, hydration shells of DNA were studied in a solution by terahertz time-domain spectroscopy. The THz spectra of three DNA solutions (in water, 40mm MgCl2 and 150 mM KCl) were transformed using an effective medium model to obtain dielectric permittivities of the water phase of solutions. Then, the parameters of two relaxation bands related to bound and free water molecules, as well as to intermolecular oscillations, were calculated. The hydration shells of DNA differ from undisturbed water by the presence of strongly bound water molecules, a higher number of free molecules and an increased number of hydrogen bonds. The presence of 40 mM MgCl2 in the solution almost does not alter the hydration shell parameters. At the same time, 150 mM KCl significantly attenuates all the found effects of hydration. Different effects of salts on hydration cannot be explained by the difference in ionic strength of solutions, they should be attributed to the specific action of Mg2+ and K+ ions. The obtained results significantly expand the existing knowledge about DNA hydration and demonstrate a high potential for using the THz time-domain spectroscopy method.


Author(s):  
Zahira Kachour ◽  
Mohammed Habchi ◽  
Sidi Mohammed Mesli ◽  
Mohammed Ziane ◽  
Mohammed Kotbi

Employing the Hybrid Reverse Monte Carlo (HRMC) simulation, we compute, using the obtained three-dimensional configurations, the orientational correlations of water molecules in the supercooled 9.26 molal LiCl aqueous solution. This study aims to add relevant structural properties to those obtained in our latest studies and further support our findings. The Li/Cl pair ions hydration shells and the water molecules distribution studied using the Radial Pair Distribution Functions (RPDF), ([Formula: see text]) and ([Formula: see text]) are further described using the Orientational Pair Correlation Functions (OPCF), [Formula: see text] which describes the probability of a water molecule oriented by the Euler angles [Formula: see text], being located at the position [Formula: see text], with respect to another water molecule oriented [Formula: see text] placed at the origin. The high dimensionality of the orientational correlation functions has not presented a calculation disability, as known with several simulations, in the face of the efficiency of the HRMC and the water–water orientational correlation functions showed the dominant impact of ions on the water molecular dipole orientations within the hydration shells and in the hydrogen bonded molecules network.


2021 ◽  
Vol 22 (17) ◽  
pp. 9350
Author(s):  
Aneta Panuszko ◽  
Maciej Pieloszczyk ◽  
Anna Kuffel ◽  
Karol Jacek ◽  
Karol A. Biernacki ◽  
...  

The biology and chemistry of proteins and peptides are inextricably linked with water as the solvent. The reason for the high stability of some proteins or uncontrolled aggregation of others may be hidden in the properties of their hydration water. In this study, we investigated the effect of stabilizing osmolyte–TMAO (trimethylamine N-oxide) and destabilizing osmolyte–urea on hydration shells of two short peptides, NAGMA (N-acetyl-glycine-methylamide) and diglycine, by means of FTIR spectroscopy and molecular dynamics simulations. We isolated the spectroscopic share of water molecules that are simultaneously under the influence of peptide and osmolyte and determined the structural and energetic properties of these water molecules. Our experimental and computational results revealed that the changes in the structure of water around peptides, caused by the presence of stabilizing or destabilizing osmolyte, are significantly different for both NAGMA and diglycine. The main factor determining the influence of osmolytes on peptides is the structural-energetic similarity of their hydration spheres. We showed that the chosen peptides can serve as models for various fragments of the protein surface: NAGMA for the protein backbone and diglycine for the protein surface with polar side chains.


2021 ◽  
Vol 21 (5) ◽  
pp. 1298
Author(s):  
Eva Oktavia Ningrum ◽  
Eva Lestiana Pratiwi ◽  
Isyarah Labbaika Shaffitri ◽  
Suprapto Suprapto ◽  
Mentari Rachmatika Mukti ◽  
...  

Zwitterionic polymers are material families characterized by high dipole moment and highly charged groups. Zwitterionic materials simultaneously possess an equimolar number of cationic and anionic moieties, maintaining overall electroneutrality and high hydrophilicity. Zwitterionic is categorized into three groups: phosphobetaine, carboxybetaine, and sulfobetaine that could form dense and stable hydration shells through the strong ion-dipole interaction among water molecules and zwitterions. As a result of their remarkable hydration capability, low interfacial energy, and marvelous antifouling capacities, these materials have been applied as adsorbing agents, biomedical applications, electronics, hydrogels, and antifouling for membrane separation and marine coatings. This review is focused on polysulfobetaine, which contains sulfonate as a negatively charged group, and quaternary ammonium as a positively charged group. Polysulfobetaine is the most promising one to be applied in the industry since it is commercially available and its monomers are easily prepared. The comparisons of several polysulfobetaine derivatives as antimicrobial, antifouling, surfactant and detergents, biomedical and electronic application, surface modification, and smart hydrogel are presented in this review.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Miraslau L. Barabash ◽  
William A. T. Gibby ◽  
Carlo Guardiani ◽  
Alex Smolyanitsky ◽  
Dmitry G. Luchinsky ◽  
...  

AbstractIn order to permeate a nanopore, an ion must overcome a dehydration energy barrier caused by the redistribution of surrounding water molecules. The redistribution is inhomogeneous, anisotropic and strongly position-dependent, resulting in complex patterns that are routinely observed in molecular dynamics simulations. Here, we study the physical origin of these patterns and of how they can be predicted and controlled. We introduce an analytic model able to predict the patterns in a graphene nanopore in terms of experimentally accessible radial distribution functions, giving results that agree well with molecular dynamics simulations. The patterns are attributable to a complex interplay of ionic hydration shells with water layers adjacent to the graphene membrane and with the hydration cloud of the nanopore rim atoms, and we discuss ways of controlling them. Our findings pave the way to designing required transport properties into nanoionic devices by optimising the structure of the hydration patterns.


2021 ◽  
Vol 154 (10) ◽  
pp. 104707
Author(s):  
Haiqi Gao ◽  
Jing Wang ◽  
Yuzhen Liu ◽  
Yannan Xie ◽  
Petr Král ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document