bonding structure
Recently Published Documents


TOTAL DOCUMENTS

456
(FIVE YEARS 82)

H-INDEX

36
(FIVE YEARS 5)

Friction ◽  
2022 ◽  
Author(s):  
Qingyuan Yu ◽  
Xinchun Chen ◽  
Chenhui Zhang ◽  
Chenxi Zhang ◽  
Wenli Deng ◽  
...  

AbstractHydrogenated amorphous carbon (a-C:H) films are capable of providing excellent superlubricating properties, which have great potential serving as self-lubricating protective layer for mechanical systems in extreme working conditions. However, it is still a huge challenge to develop a-C:H films capable of achieving robust superlubricity state in vacuum. The main obstacle derives from the lack of knowledge on the influencing mechanism of deposition parameters on the films bonding structure and its relation to their self-lubrication performance. Aiming at finding the optimized deposition energy and revealing its influencing mechanism on superlubricity, a series of highly-hydrogenated a-C:H films were synthesized with appropriate ion energy, and systematic tribological experiments and structural characterization were conducted. The results highlight the pivotal role of ion energy on film composition, nanoclustering structure, and bonding state, which determine mechanical properties of highly-hydrogenated a-C:H films and surface passivation ability and hence their superlubricity performance in vacuum. The optimized superlubricity performance with the lowest friction coefficient of 0.006 coupled with the lowest wear rate emerges when the carbon ion energy is just beyond the penetration threshold of subplantation. The combined growth process of surface chemisorption and subsurface implantation is the key for a-C:H films to acquire stiff nanoclustering network and high volume of hydrogen incorporation, which enables a robust near-frictionless sliding surface. These findings can provide a guidance towards a more effective manipulation of self-lubricating a-C:H films for space application.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Jihua Peng ◽  
Jingwen Liao ◽  
Yinglong Peng ◽  
Yang Xiao ◽  
Jinhai Huang ◽  
...  

Diamond-like carbon (DLC) coatings deposited onto high-speed-steel surfaces were subjected to deep cryogenic treatment (DCT) at temperatures of −120 to −196 °C to investigate the evolution of microstructure, bonding structure, and mechanical properties. The surface morphology and the bonding structure of the DLC coatings were studied using scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy. It is found that DCT affects the surface morphology, especially the size and the height of the aggregates. For those DLCs with more than 50% sp3 C fraction, the sp2 C → sp3 C transformation occurred in coatings treated at a temperature of −120 to −160 °C; and the maximum fraction of sp3 C was obtained after treatment at −140 °C. Almost keeping the wear resistance of DLCs, DCT can improve the adhesion strength, and surface hardness. The findings of this study indicate that DCT will be a potential post-treatment method to tune the microstructure and mechanical performance of DLC coatings.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Xianfeng Mo ◽  
Xinhao Zhang ◽  
Lu Fang ◽  
Yu Zhang

When thermoplastic resins such as polyethylene (PE) and polypropylene (PP) are selected as wood adhesives to bond wood particles (fibers, chips, veneers) by using the hot-pressing technique, the formaldehyde emission issue that has long existed in the wood-based panel industry can be effectively solved. In this study, in general, thermoplastic-bonded wood-based panels presented relatively higher mechanical properties and better water resistance and machinability than the conventional urea–formaldehyde resin-bonded wood-based panels. However, the bonding structure of the wood and thermoplastic materials was unstable at high temperatures. Compared with the wood–plastic composites manufactured by the extruding or injection molding methods, thermoplastic-bonded wood-based panels have the advantages of larger size, a wider raw material range and higher production efficiency. The processing technology, bonding mechanism and the performance of thermoplastic-bonded wood-based panels are comprehensively summarized and reviewed in this paper. Meanwhile, the existing problems of this new kind of panel and their future development trends are also highlighted, which can provide the wood industry with foundations and guidelines for using thermoplastics as environmentally friendly adhesives and effectively solving indoor pollution problems.


2021 ◽  
Vol 9 ◽  
Author(s):  
I. Nezbeda

Dipolar versions of two qualitatively different types of simple short range model fluids which exhibit the phenomenon of hydrogen bonding and which could thus serve as a reference in equations of state for associating fluids have been considered: the primitive model of water descending from the TIP4P model and the fluid of hard tetrahedra. The hydrogen bonding structure exhibited by the latter model results from purely repulsive interactions whereas in the first model the “hydrogen bonding interaction” is explicitly incorporated in the model. Since the water molecules bear a strong dipole moment, the effect of the added dipole-dipole interaction on the structure of the two short-range models is therefore examined considering them both in the full and screened dipole-dipole modifications. It is found that the hydrogen bonding structure in the primitive model resulting from the site-site interactions is so strong that the additional dipole-dipole interaction has only a marginal effect on its structure and contributes thus only to the internal energy. On the contrary, even only a weak dipole-dipole interaction destroys the original hydrogen bonding structure of the hard tetrahedron fluid; to preserve it, a screened dipole-dipole interaction has to be used in the equation of state development.


2021 ◽  
Vol 63 (11) ◽  
pp. 648-653
Author(s):  
W S Ji ◽  
Z L Zhou ◽  
H Zhang ◽  
S Zheng

The internal structure of heavy-calibre rocket engines, as used in army ordnance, is a multi-interface bonding structure. The bonding quality between layers has an important impact on safety when shooting, so it must be tested before use in the field. In this paper, the progress of research into ultrasonic testing (UT) technology for the interface bonding of solid rocket motors is reviewed from the two aspects of testing methods and signal processing technology. Future work is also discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaoguang Zheng ◽  
Qi Ren ◽  
Huan Xiong ◽  
Xiaoming Song

As one of the major contributors to the early failures of steel bridge deck pavements, the bonding between steel and asphalt overlay has long been a troublesome issue. In this paper, a novel composite bonding structure was introduced consisting of epoxy resin micaceous iron oxide (EMIO) primer, solvent-free epoxy resin waterproof layer, and ethylene-vinyl acetate (EVA) hot melt pellets. A series of strength tests were performed to study its mechanical properties, including pull-off strength tests, dumbbell tensile tests, lap shear tests, direct tension tests, and 45°-inclined shear tests. The results suggested that the bonding structure exhibited fair bonding strength, tensile strength, and shear strength. Anisotropic behaviour was also observed at high temperatures. For epoxy resin waterproof layer, the loss of bonding strength, tensile strength, and shear strength at 60°C was 70%, 35%, and 39%, respectively. Subsequent pavement performance-oriented tests included five-point bending tests and accelerated wheel tracking tests. The impacts of bonding on fatigue resistance and rutting propagation were studied. It was found that the proposed bonding structure could provide a durable and well-bonded interface and was thus beneficial to prolong the fatigue lives of asphalt overlay. The choice of bonding materials was found irrelevant to the ultimate rutting depth of pavements. But the bonding combination of epoxy resin waterproof and EVA pellets could delay the early-stage rutting propagation.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6394
Author(s):  
Kai-Cheng Shie ◽  
Po-Ning Hsu ◽  
Yu-Jin Li ◽  
K. N. Tu ◽  
Chih Chen

In microelectronic packaging technology for three-dimensional integrated circuits (3D ICs), Cu-to-Cu direct bonding appears to be the solution to solve the problems of Joule heating and electromigration (EM) in solder microbumps under 10 μm in diameter. However, EM will occur in Cu–Cu bumps when the current density is over 106 A/cm2. The surface, grain boundary, and the interface between the Cu and TiW adhesion layer are the three major diffusion paths in EM tests, and which one may lead to early failure is of interest. This study showed that bonding strength affects the outcome. First, if the bonding strength is not strong enough to sustain the thermal mismatch of materials during EM tests, the bonding interface will fracture and lead to an open circuit of early failure. Second, if the bonding strength can sustain the bonding structure, voids will form at the passivation contact area between the Cu–Cu bump and redistribution layer (RDL) due to current crowding. When the void grows along the passivation interface and separates the Cu–Cu bump and RDL, an open circuit can occur, especially when the current density and temperature are severe. Third, under excellent bonding, when the voids at the contact area between the Cu–Cu bump and RDL do not merge together, the EM lifetime can be more than 5000 h.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6008
Author(s):  
Tahira Yaqoob ◽  
Malika Rani ◽  
Arshad Mahmood ◽  
Rubia Shafique ◽  
Safia Khan ◽  
...  

MXene/Ag2CrO4 nanocomposite was synthesized effectively by means of superficial low-cost co-precipitation technique in order to inspect its capacitive storage potential for supercapacitors. MXene was etched from MAX powder and Ag2CrO4 spinel was synthesized by an easy sol-gel scheme. X-Ray diffraction (XRD) revealed an addition in inter-planar spacing from 4.7 Å to 6.2 Å while Ag2CrO4 nanoparticles diffused in form of clusters over MXene layers that had been explored by scanning electron microscopy (SEM). Energy dispersive X-Ray (EDX) demonstrated the elemental analysis. Raman spectroscopy opens the gap between bonding structure of as-synthesized nanocomposite. From photoluminence (PL) spectra the energy band gap value 3.86 eV was estimated. Electrode properties were characterized by applying electrochemical observations such as cyclic voltammetry along with electrochemical impedance spectroscopy (EIS) for understanding redox mechanism and electron transfer rate constant Kapp. Additionally, this novel work will be an assessment to analyze the capacitive behavior of electrode in different electrolytes such as in acidic of 0.1 M H2SO4 has specific capacitance Csp = 525 F/g at 10 mVs−1 and much low value in basic of 1 M KOH electrolyte. This paper reflects the novel synthesis and applications of MXene/Ag2CrO4 nanocomposite electrode fabrication in energy storage devices such as supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document