saccadic system
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 4)

H-INDEX

23
(FIVE YEARS 0)

2018 ◽  
Vol 120 (2) ◽  
pp. 489-496 ◽  
Author(s):  
Stephen J. Heinen ◽  
Jeremy B. Badler ◽  
Scott N. J. Watamaniuk

Models of smooth pursuit eye movements stabilize an object’s retinal image, yet pursuit is peppered with small, destabilizing “catch-up” saccades. Catch-up saccades might help follow a small, spot stimulus used in most pursuit experiments, since fewer of them occur with large stimuli. However, they can return when a large stimulus has a small central feature. It may be that a central feature on a large object automatically recruits the saccadic system. Alternatively, a cognitive choice is made that the feature is the pursuit goal, and the saccadic system is then recruited to pursue it. Observers pursued a 5-dot stimulus composed of a central dot surrounded by four peripheral dots arranged as a diamond. An attention task specified the pursuit goal as either the central element, or the diamond gestalt. Fewer catch-up saccades occurred with the Gestalt goal than with the central goal, although the additional saccades with the central goal neither enhanced nor impeded pursuit. Furthermore, removing the central element from the diamond goal further reduced catch-up saccade frequency, indicating that the central element automatically triggered some saccades. Higher saccade frequency was not simply due to narrowly focused attention, since attending a small peripheral diamond during pursuit elicited fewer saccades than attending the diamond positioned foveally. The results suggest some saccades are automatically elicited by a small central element, but when it is chosen as the pursuit goal the saccadic system is further recruited to pursue it. NEW & NOTEWORTHY Smooth-pursuit eye movements stabilize retinal image motion to prevent blur. Curiously, smooth pursuit is frequently supplemented by small catchup saccades that could reduce image clarity. Catchup saccades might only be needed to pursue small laboratory stimuli, as they are infrequent during large object pursuit. Yet large objects with central features revive them. Here, we show that voluntarily selecting a feature as the pursuit goal elicits saccades that do not help pursuit.


2017 ◽  
Author(s):  
Uday K. Jagadisan ◽  
Neeraj J. Gandhi

AbstractThe trigeminal blink reflex can be evoked by delivering an air puff to the eye. If timed appropriately, e.g., during motor preparation, the small, loopy blink-related eye movement (BREM) associated with eyelid closure disinhibits the saccadic system and reduces the reaction time of planned eye movements. The BREM and intended eye movement overlap temporally, thus a mathematical formulation is required to objectively extract saccade features – onset time and velocity profile – from the combined movement. While it has been assumed that the interactions are nonlinear, we show that blink-triggered movements can be modeled as a linear combination of a typical BREM and a normal saccade, crucially, with an imposed delay between the two components. Saccades reconstructed with this approach are largely similar to control movements in their temporal and spatial profiles. Furthermore, activity profiles of saccade-related bursts in superior colliculus neurons for the recovered saccades closely match those for normal saccades. Thus, blink perturbations, if properly accounted for, offer a non-invasive tool to probe the behavioral and neural signatures of sensory-to-motor transformations.New and noteworthyThe trigeminal blink reflex is a brief noninvasive perturbation that disinhibits the saccadic system and provides a behavioral readout of the latent motor preparation process. The saccade, however, is combined with a loopy blink related eye movement. Here, we provide a mathematical formulation to extract the saccade from the combined movement. Thus, blink perturbations, when properly accounted for, offer a non-invasive tool to probe the behavioral and neural signatures of sensory-to-motor transformations.


Author(s):  
V. N. Kasatkin ◽  
I. D. Borodina ◽  
M. A. Shurupova ◽  
A. A. Dreneva ◽  
A. A. Ryabova ◽  
...  

2014 ◽  
Vol 14 (10) ◽  
pp. 750-750 ◽  
Author(s):  
X. Tian ◽  
Z. Hafed

Sign in / Sign up

Export Citation Format

Share Document