scholarly journals Choosing a foveal goal recruits the saccadic system during smooth pursuit

2018 ◽  
Vol 120 (2) ◽  
pp. 489-496 ◽  
Author(s):  
Stephen J. Heinen ◽  
Jeremy B. Badler ◽  
Scott N. J. Watamaniuk

Models of smooth pursuit eye movements stabilize an object’s retinal image, yet pursuit is peppered with small, destabilizing “catch-up” saccades. Catch-up saccades might help follow a small, spot stimulus used in most pursuit experiments, since fewer of them occur with large stimuli. However, they can return when a large stimulus has a small central feature. It may be that a central feature on a large object automatically recruits the saccadic system. Alternatively, a cognitive choice is made that the feature is the pursuit goal, and the saccadic system is then recruited to pursue it. Observers pursued a 5-dot stimulus composed of a central dot surrounded by four peripheral dots arranged as a diamond. An attention task specified the pursuit goal as either the central element, or the diamond gestalt. Fewer catch-up saccades occurred with the Gestalt goal than with the central goal, although the additional saccades with the central goal neither enhanced nor impeded pursuit. Furthermore, removing the central element from the diamond goal further reduced catch-up saccade frequency, indicating that the central element automatically triggered some saccades. Higher saccade frequency was not simply due to narrowly focused attention, since attending a small peripheral diamond during pursuit elicited fewer saccades than attending the diamond positioned foveally. The results suggest some saccades are automatically elicited by a small central element, but when it is chosen as the pursuit goal the saccadic system is further recruited to pursue it. NEW & NOTEWORTHY Smooth-pursuit eye movements stabilize retinal image motion to prevent blur. Curiously, smooth pursuit is frequently supplemented by small catchup saccades that could reduce image clarity. Catchup saccades might only be needed to pursue small laboratory stimuli, as they are infrequent during large object pursuit. Yet large objects with central features revive them. Here, we show that voluntarily selecting a feature as the pursuit goal elicits saccades that do not help pursuit.

2002 ◽  
Vol 87 (6) ◽  
pp. 2684-2699 ◽  
Author(s):  
Masaki Tanaka ◽  
Stephen G. Lisberger

Anatomical and physiological studies have shown that the “frontal pursuit area” (FPA) in the arcuate cortex of monkeys is involved in the control of smooth pursuit eye movements. To further analyze the signals carried by the FPA, we examined the activity of pursuit-related neurons recorded from a discrete region near the arcuate spur during a variety of oculomotor tasks. Pursuit neurons showed direction tuning with a wide range of preferred directions and a mean full width at half-maximum of 129°. Analysis of latency using the “receiver operating characteristic” to compare responses to target motion in opposite directions showed that the directional response of 58% of FPA neurons led the initiation of pursuit, while 19% led by 25 ms or more. Analysis of neuronal responses during pursuit of a range of target velocities revealed that the sensitivity to eye velocity was larger during the initiation of pursuit than during the maintenance of pursuit, consistent with two components of firing related to image motion and eye motion. FPA neurons showed correlates of two behavioral features of pursuit documented in prior reports. 1) Eye acceleration at the initiation of pursuit declines as a function of the eccentricity of the moving target. FPA neurons show decreased firing at the initiation of pursuit in parallel with the decline in eye acceleration. This finding is consistent with prior suggestions that the FPA plays a role in modulating the gain of visual-motor transmission for pursuit. 2) A stationary eccentric cue evokes a smooth eye movement opposite in direction to the cue and enhances the pursuit evoked by subsequent target motions. Many pursuit neurons in the FPA showed weak, phasic visual responses for stationary targets and were tuned for the positions about 4° eccentric on the side opposite to the preferred pursuit direction. However, few neurons (12%) responded during the preparation or execution of saccades. The responses to the stationary target could account for the behavioral effects of stationary, eccentric cues. Further analysis of the relationship between firing rate and retinal position error during pursuit in the preferred and opposite directions failed to provide evidence for a large contribution of image position to the firing of FPA neurons. We conclude that FPA processes information in terms of image and eye velocity and that it is functionally separate from the saccadic frontal eye fields, which processes information in terms of retinal image position.


2009 ◽  
Vol 9 (1) ◽  
pp. 33-33 ◽  
Author(s):  
T. C. A. Freeman ◽  
R. A. Champion ◽  
J. H. Sumnall ◽  
R. J. Snowden

2014 ◽  
Vol 112 (2) ◽  
pp. 249-262 ◽  
Author(s):  
Yoshiko Izawa ◽  
Hisao Suzuki

We recorded the activity of fixation neurons in the frontal eye field (FEF) in trained monkeys and analyzed their activity during smooth pursuit eye movements. Fixation neurons were densely located in the area of the FEF in the caudal part of the arcuate gyrus facing the inferior arcuate sulcus where focal electrical stimulation suppressed the generation of saccades and smooth pursuit in bilateral directions at an intensity lower than the threshold for eliciting electrically evoked saccades. Whereas fixation neurons discharged tonically during fixation, they showed a variety of discharge patterns during smooth pursuit, ranging from a decrease in activity to an increase in activity. Of these, more than two-thirds were found to show a reduction in activity during smooth pursuit in the ipsilateral and bilateral directions. The reduction in activity of fixation neurons began at pursuit initiation and continued during pursuit maintenance. When catch-up saccades during the initiation of pursuit were eliminated by a step-ramp target routine, the reduced activity of fixation neurons remained. The reduction in activity during pursuit was not dependent on the activity during fixation without a target. Based on these results, we discuss the role of the FEF at maintaining fixation in relation to various other brain areas. We suggest that fixation neurons in the FEF contribute to the suppression of smooth pursuit. These results suggest that FEF fixation neurons are part of a more generalized visual fixation system through which suppressive control is exerted on smooth pursuit, as well as saccades.


2009 ◽  
Vol 101 (2) ◽  
pp. 934-947 ◽  
Author(s):  
Masafumi Ohki ◽  
Hiromasa Kitazawa ◽  
Takahito Hiramatsu ◽  
Kimitake Kaga ◽  
Taiko Kitamura ◽  
...  

The anatomical connection between the frontal eye field and the cerebellar hemispheric lobule VII (H-VII) suggests a potential role of the hemisphere in voluntary eye movement control. To reveal the involvement of the hemisphere in smooth pursuit and saccade control, we made a unilateral lesion around H-VII and examined its effects in three Macaca fuscata that were trained to pursue visually a small target. To the step (3°)-ramp (5–20°/s) target motion, the monkeys usually showed an initial pursuit eye movement at a latency of 80–140 ms and a small catch-up saccade at 140–220 ms that was followed by a postsaccadic pursuit eye movement that roughly matched the ramp target velocity. After unilateral cerebellar hemispheric lesioning, the initial pursuit eye movements were impaired, and the velocities of the postsaccadic pursuit eye movements decreased. The onsets of 5° visually guided saccades to the stationary target were delayed, and their amplitudes showed a tendency of increased trial-to-trial variability but never became hypo- or hypermetric. Similar tendencies were observed in the onsets and amplitudes of catch-up saccades. The adaptation of open-loop smooth pursuit velocity, tested by a step increase in target velocity for a brief period, was impaired. These lesion effects were recognized in all directions, particularly in the ipsiversive direction. A recovery was observed at 4 wk postlesion for some of these lesion effects. These results suggest that the cerebellar hemispheric region around lobule VII is involved in the control of smooth pursuit and saccadic eye movements.


2011 ◽  
Vol 70 ◽  
pp. 352-352 ◽  
Author(s):  
K Strand Brodd ◽  
K Rosander ◽  
H Grönqvist ◽  
G Holmström ◽  
B Strömberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document