base transition
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 18)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 3 ◽  
Author(s):  
Simon Sretenovic ◽  
Shishi Liu ◽  
Gen Li ◽  
Yanhao Cheng ◽  
Tingting Fan ◽  
...  

As a precise genome editing technology, base editing is broadly used in both basic and applied plant research. Cytosine base editors (CBEs) and adenine base editors (ABEs) represent the two commonly used base editor types that mediate C-to-T and A-to-G base transition changes at the target sites, respectively. To date, no transversion base editors have been described in plants. Here, we assessed three C-to-G base editors (CGBEs) for targeting sequences with SpCas9’s canonical NGG protospacer adjacent motifs (PAMs) as well as three PAM-less SpRY-based CGBEs for targeting sequences with relaxed PAM requirements. The analyses in rice and tomato protoplasts showed that these CGBEs could make C-to-G conversions at the target sites, and they preferentially edited the C6 position in the 20-nucleotide target sequence. C-to-T edits, insertions and deletions (indels) were major byproducts induced by these CGBEs in the protoplast systems. Further assessment of these CGBEs in stably transformed rice and poplar plants revealed the preference for editing of non-GC sites, and C-to-T edits are major byproducts. Successful C-to-G editing in stably transgenic rice plants was achieved by rXRCC1-based CGBEs with monoallelic editing efficiencies up to 38% in T0 lines. The UNG-rAPOBEC1 (R33A)-based CGBE resulted in successful C-to-G editing in polar, with monoallelic editing efficiencies up to 6.25% in T0 lines. Overall, this study revealed that different CGBEs have different preference on preferred editing sequence context, which could be influenced by cell cycles, DNA repair pathways, and plant species.


2021 ◽  
Vol 1021 ◽  
pp. 200-209
Author(s):  
Raghda Alsayeed ◽  
Dalia Mahmood Jamil ◽  
Huda Ghalib Salman ◽  
Mohammed H. Al-Mashhadani

In this research, the actions of antibiotic trimethoprim alone and with metals combained. Then assayed through formation of base transition metal compounds as ligands have the chance to achieve an unusual arrangement and stability complexes of coordination. We show advancement in using transtional metal compounds medications for treamentt manyl human illnesses such as carcinomas, lymphomas, control of infections, anti-inflammatory disorders, diabetes, with neurological conditions. This combination with transition metal observed the interaction can be separated by derivative spectroscopic method and measure the characterization of compound by IR and UV spectroscopy.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jitendra N. Borase ◽  
R. G. Mahale ◽  
S. S. Rajput ◽  
Dhanraj S. Shirsath

AbstractIn recent years heterocyclic Schiff base metal complexes attract more attention in biological application and also showing interesting co-ordination chemistry. In this research article a novel heterocyclic methyl-substituted pyridine Schiff base transition metal complexes of Fe(III), Co(III), Cu(II), and Ni(II) have been design and synthesized by reacting metal acetate or metal salts (FeCl3, CoOAc, CuOAc, NiOAc), with substituted heterocyclic ligand. All newly synthesized metalcomplexes were characterized by spectroscopic data and screened for elemental analysis, FT-IR, ESR, Magnetic susceptibility and TGA. The Electronic spectra and magnetic susceptibility measurements indicates that square planer and octahedral geometry of these complexes also suggest their structure in which (N, O) group acts as bidentate ligand. The thermal stability, decomposition rate and thermodynamic parameters of synthesized metal complexes were calculated by Freeman Carroll method. Also the biostatistical data of antimicrobial and anti-oxidant activities of synthesized metal complexes indicates moderate to good results. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document