compensatory movement
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
Author(s):  
Issei Ogasawara ◽  
Noriaki Hattori ◽  
Gajanan S. Revankar ◽  
Shoji Konda ◽  
Yuki Uno ◽  
...  

Objectives: Runner’s dystonia is a task-specific dystonia that occurs in the lower limbs and trunk, with diverse symptomatology. We aimed to identify the origin of a dystonic movement abnormality using combined three-dimensional kinematic analysis and electromyographic (EMG) assessment during treadmill running.Participant: A 20-year-old female runner who complained of right-foot collision with the left-leg during right-leg swing-phase, which mimicked right-ankle focal dystonia.Results: Kinematic and EMG assessment of her running motion was performed, which showed a significant drop of the left pelvis during right-leg stance-phase, and a simultaneous increase of right hip adductor muscle activity. This resulted in a pronounced adduction of the entire right lower limb with respect to the pelvis segment. Trajectories of right foot were seen to encroach upon left-leg area.Discussion: These findings suggested that the symptom of this runner was most likely a form of segmental dystonia originating from an impaired control of hip and pelvis, rather than a distal focal ankle dystonia.Conclusion: We conclude that, for individualized symptom assessment, deconstructing the symptom origin from its secondary compensatory movement is crucial for characterizing dystonia. Kinematic and EMG evaluation will therefore be a prerequisite to distinguish symptom origin from secondary compensatory movement.


2021 ◽  
Author(s):  
Issei Ogasawara ◽  
Hattori ◽  
Revankar ◽  
Shoji Konda ◽  
M.S. Yuki Uno ◽  
...  

Abstract Objectives: Runner's dystonia is a task specific dystonia that occurs in the lower limbs and trunk, with diverse symptomatology. We aimed to identify the origin of a dystonic movement abnormality using combined three-dimensional kinematic analysis and electromyographic (EMG) assessment during treadmill running. Participant: A twenty-year-old female runner who complained of right-foot collision with the left-leg during right-leg swing-phase, that mimicked right-ankle focal dystonia. Results: Kinematic and EMG assessment of her running motion was performed which showed a significant drop of the left pelvis during right-leg stance-phase, and a simultaneous increase of right hip adductor muscle activity. This resulted in a pronounced adduction of the entire right lower limb with respect to the pelvis segment. Trajectories of right-foot were seen to encroach upon left-leg area. Discussion: These findings suggested that the symptom of this runner was most likely a form of segmental dystonia originating from an impaired control of hip and pelvis, rather than a distal focal ankle dystonia. Conclusion: We conclude that, for individualized symptom assessment, deconstructing the symptom origin from its secondary compensatory movement is crucial for characterizing dystonia. Kinematic and EMG evaluation will therefore be a prerequisite to distinguish symptom origin from secondary compensatory movement.


2020 ◽  
Author(s):  
Heather E. Williams ◽  
Craig S. Chapman ◽  
Patrick M. Pilarski ◽  
Albert H. Vette ◽  
Jacqueline S. Hebert

Abstract Background: Research studies on upper limb prosthesis function often rely on the use of simulated myoelectric prostheses (attached to and operated by individuals with intact limbs), primarily to increase participant sample size. However, it is not known if these devices elicit the same movement strategies as myoelectric prostheses (operated by individuals with amputation). The objective of this study was to compare compensatory movement strategies, measured by hand and upper body kinematics, of twelve non-disabled individuals wearing a simulated prosthesis to those of three individuals with transradial amputation using their custom-fitted myoelectric devices. Methods: Motion capture was used to obtain kinematic data as participants performed a standardized functional task. Performance metrics, end effector movements and angular kinematics were analyzed. Results: Results show that participants using a simulated or actual myoelectric prosthesis had similar differences in phase durations, hand velocities, hand trajectories, movement units, grip aperture plateaus, and trunk and shoulder motion when compared to normative behaviour. Conclusions: This study suggests that the use of a simulated device in upper limb research offers a reasonable approximation of compensatory movement strategies employed by a novice to mid-skilled transradial myoelectric prosthesis user.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Egbert J. D. Veen ◽  
Cornelis T. Koorevaar ◽  
Koen H. M. Verdonschot ◽  
Tim E. Sluijter ◽  
Tom de Groot ◽  
...  

Author(s):  
Jessica Barth ◽  
Joeseph W. Klaesner ◽  
Catherine E. Lang

Abstract Background Standardized assessments are used in rehabilitation clinics after stroke to measure restoration versus compensatory movements of the upper limb. Accelerometry is an emerging tool that can bridge the gap between in- and out-of-clinic assessments of the upper limb, but is limited in that it currently does not capture the quality of a person’s movement, an important concept to assess compensation versus restoration. The purpose of this analysis was to characterize how accelerometer variables may reflect upper limb compensatory movement patterns after stroke. Methods This study was a secondary analysis of an existing data set from a Phase II, single-blind, randomized, parallel dose–response trial (NCT0114369). Sources of data utilized were: (1) a compensatory movement score derived from video analysis of the Action Research Arm Test (ARAT), and (2) calculated accelerometer variables quantifying time, magnitude and variability of upper limb movement from the same time point during study participation for both in-clinic and out-of-clinic recording periods. Results Participants had chronic upper limb paresis of mild to moderate severity. Compensatory movement scores varied across the sample, with a mean of 73.7 ± 33.6 and range from 11.5 to 188. Moderate correlations were observed between the compensatory movement score and each accelerometer variable. Accelerometer variables measured out-of-clinic had stronger relationships with compensatory movements, compared with accelerometer variables in-clinic. Variables quantifying time, magnitude, and variability of upper limb movement out-of-clinic had relationships to the compensatory movement score. Conclusions Accelerometry is a tool that, while measuring movement quantity, can also reflect the use of general compensatory movement patterns of the upper limb in persons with chronic stroke. Individuals who move their limbs more in daily life with respect to time and variability tend to move with less movement compensations and more typical movement patterns. Likewise, individuals who move their paretic limbs less and their non-paretic limb more in daily life tend to move with more movement compensations at all joints in the paretic limb and less typical movement patterns.


Sign in / Sign up

Export Citation Format

Share Document