scholarly journals Symptom Locus and Symptom Origin Incongruity in Runner’s Dystonia – Case Study of an Elite Female Runner

2021 ◽  
Vol 15 ◽  
Author(s):  
Issei Ogasawara ◽  
Noriaki Hattori ◽  
Gajanan S. Revankar ◽  
Shoji Konda ◽  
Yuki Uno ◽  
...  

Objectives: Runner’s dystonia is a task-specific dystonia that occurs in the lower limbs and trunk, with diverse symptomatology. We aimed to identify the origin of a dystonic movement abnormality using combined three-dimensional kinematic analysis and electromyographic (EMG) assessment during treadmill running.Participant: A 20-year-old female runner who complained of right-foot collision with the left-leg during right-leg swing-phase, which mimicked right-ankle focal dystonia.Results: Kinematic and EMG assessment of her running motion was performed, which showed a significant drop of the left pelvis during right-leg stance-phase, and a simultaneous increase of right hip adductor muscle activity. This resulted in a pronounced adduction of the entire right lower limb with respect to the pelvis segment. Trajectories of right foot were seen to encroach upon left-leg area.Discussion: These findings suggested that the symptom of this runner was most likely a form of segmental dystonia originating from an impaired control of hip and pelvis, rather than a distal focal ankle dystonia.Conclusion: We conclude that, for individualized symptom assessment, deconstructing the symptom origin from its secondary compensatory movement is crucial for characterizing dystonia. Kinematic and EMG evaluation will therefore be a prerequisite to distinguish symptom origin from secondary compensatory movement.

2021 ◽  
Author(s):  
Issei Ogasawara ◽  
Hattori ◽  
Revankar ◽  
Shoji Konda ◽  
M.S. Yuki Uno ◽  
...  

Abstract Objectives: Runner's dystonia is a task specific dystonia that occurs in the lower limbs and trunk, with diverse symptomatology. We aimed to identify the origin of a dystonic movement abnormality using combined three-dimensional kinematic analysis and electromyographic (EMG) assessment during treadmill running. Participant: A twenty-year-old female runner who complained of right-foot collision with the left-leg during right-leg swing-phase, that mimicked right-ankle focal dystonia. Results: Kinematic and EMG assessment of her running motion was performed which showed a significant drop of the left pelvis during right-leg stance-phase, and a simultaneous increase of right hip adductor muscle activity. This resulted in a pronounced adduction of the entire right lower limb with respect to the pelvis segment. Trajectories of right-foot were seen to encroach upon left-leg area. Discussion: These findings suggested that the symptom of this runner was most likely a form of segmental dystonia originating from an impaired control of hip and pelvis, rather than a distal focal ankle dystonia. Conclusion: We conclude that, for individualized symptom assessment, deconstructing the symptom origin from its secondary compensatory movement is crucial for characterizing dystonia. Kinematic and EMG evaluation will therefore be a prerequisite to distinguish symptom origin from secondary compensatory movement.


2020 ◽  
Vol 38 (5) ◽  
pp. 518-527
Author(s):  
Masamichi Okudaira ◽  
Steffen Willwacher ◽  
Seita Kuki ◽  
Kaito Yamada ◽  
Takuya Yoshida ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Asiyeh Shojaee ◽  
Firooze Ronnasian ◽  
Mahdiyeh Behnam ◽  
Mansoor Salehi

AbstractBackgroundSirenomelia, also called mermaid syndrome, is a rare lethal multi-system congenital deformity with an incidence of one in 60,000–70,000 pregnancies. Sirenomelia is mainly characterized by the fusion of lower limbs and is widely associated with severe urogenital and gastrointestinal malformations. The presence of a single umbilical artery derived from the vitelline artery is the main anatomical feature distinguishing sirenomelia from caudal regression syndrome. First-trimester diagnosis of this disorder and induced abortion may be the safest medical option. In this report, two cases of sirenomelia that occurred in an white family will be discussed.Case presentationWe report two white cases of sirenomelia occurring in a 31-year-old multigravid pregnant woman. In the first pregnancy (18 weeks of gestation) abortion was performed, but in the third pregnancy (32 weeks) the stillborn baby was delivered by spontaneous vaginal birth. In the second and fourth pregnancies, however, she gave birth to normal babies. Three-dimensional ultrasound imaging showed fusion of the lower limbs. Neither she nor any member of her family had a history of diabetes. In terms of other risk factors, she had no history of exposure to teratogenic agents during her pregnancy. Also, her marriage was non-consanguineous.ConclusionThis report suggests the existence of a genetic background in this mother with a Mendelian inheritance pattern of 50% second-generation incidence in her offspring.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2619
Author(s):  
Yoshiaki Kataoka ◽  
Ryo Takeda ◽  
Shigeru Tadano ◽  
Tomoya Ishida ◽  
Yuki Saito ◽  
...  

Recently, treadmills equipped with a lower-body positive-pressure (LBPP) device have been developed to provide precise body weight support (BWS) during walking. Since lower limbs are covered in a waist-high chamber of an LBPP treadmill, a conventional motion analysis using an optical method is impossible to evaluate gait kinematics on LBPP. We have developed a wearable-sensor-based three-dimensional motion analysis system, H-Gait. The purpose of the present study was to investigate the effects of BWS by a LBPP treadmill on gait kinematics using an H-Gait system. Twenty-five healthy subjects walked at 2.5 km/h on a LBPP treadmill under the following three conditions: (1) 0%BWS, (2) 25%BWS and (3) 50%BWS conditions. Acceleration and angular velocity from seven wearable sensors were used to analyze lower limb kinematics during walking. BWS significantly decreased peak angles of hip adduction, knee adduction and ankle dorsiflexion. In particular, the peak knee adduction angle at the 50%BWS significantly decreased compared to at the 25%BWS (p = 0.012) or 0%BWS (p < 0.001). The present study showed that H-Gait system can detect the changes in gait kinematics in response to BWS by a LBPP treadmill and provided a useful clinical application of the H-Gait system to walking exercises.


Author(s):  
Frederik Scherff ◽  
Jessica Gola ◽  
Sebastian Scholl ◽  
Kinshuk Srivastava ◽  
Thorsten Staudt ◽  
...  

AbstractDual-phase steel shows a strong connection between its microstructure and its mechanical properties. This structure–property correlation is caused by the composition of the microstructure of a soft ferritic matrix with embedded hard martensite areas, leading to a simultaneous increase in strength and ductility. As a result, dual-phase steels are widely used especially for strength-relevant and energy-absorbing sheet metal structures. However, their use as heavy plate steel is also desirable. Therefore, a better understanding of the structure–property correlation is of great interest. Microstructure-based simulation is essential for a realistic simulation of the mechanical properties of dual-phase steel. This paper describes the entire process route of such a simulation, from the extraction of the microstructure by 3D tomography and the determination of the properties of the individual phases by nanoindentation, to the implementation of a simulation model and its validation by experiments. In addition to simulations based on real microstructures, simulations based on virtual microstructures are also of great importance. Thus, a model for the generation of virtual microstructures is presented, allowing for the same statistical properties as real microstructures. With the help of these structures and the aforementioned simulation model, it is then possible to predict the mechanical properties of a dual-phase steel, whose three-dimensional (3D) microstructure is not yet known with high accuracy. This will enable future investigations of new dual-phase steel microstructures within a virtual laboratory even before their production.


2018 ◽  
Vol 88 (17) ◽  
pp. 1915-1930 ◽  
Author(s):  
Rong Liu ◽  
Terence T Lao ◽  
Trevor J Little ◽  
Xinbo Wu ◽  
Xiao Ke

Textile-based compression interventions (e.g. compression stockings and bandages), as an essential “source of pressure”, have impacted the effectiveness of pressure dosage delivery. The homogeneous structures of traditional compression shells generate highly uneven pressure distributions around leg geometrics in a passive mode, resulting in side effects and uncomfortable wearing perception. With this in mind, new heterogeneous compression sleeves with hybrid elastic properties were fabricated utilizing advanced three-dimensional seamless knitting technology and a unique laid-in structural design. PicoPress pressure assessment revealed in vivo that the developed heterogeneous compression shells with appropriate configurations for the lower limbs demonstrated the capability to proactively reshape skin pressures around leg cross-sections via calibrated proportions of segments with hybrid elastic moduli. The reduced anterior peak focal pressures and increased pressures at muscle-dominated posterior calves together provided a promising measure to enhance pressure function and user compliance in practice. The results will contribute to the development of a new generation of heterogeneous compression stockings with “bi-axial” pressure profiles for improved compression performance in extensive applications.


2021 ◽  
Author(s):  
Kazuya Kaneda ◽  
Kengo Harato ◽  
Satoshi Oki ◽  
Yoshitake Yamada ◽  
Masaya Nakamura ◽  
...  

Abstract Background The classification of knee osteoarthritis is an essential clinical issue, particularly in terms of diagnosing early knee osteoarthritis. However, the evaluation of three-dimensional limb alignment on two-dimensional radiographs is limited. This study evaluated the three-dimensional changes induced by weight-bearing in the alignments of lower limbs at various stages of knee osteoarthritis.Methods 45 knees of 25 patients (69.9 ± 8.9 years) with knee OA were examined in the study. CT images of the entire leg were obtained in the supine and standing positions using conventional CT and 320 low-detector upright CT, respectively. Next, the differences in the three-dimensional alignment of the entire leg in the supine and standing positions were obtained using 3D-3D surface registration technique, and those were compared for each Kellgren–Lawrence grade. Results Increased flexion, adduction, and tibial internal rotation were observed in the standing position, as opposed to the supine position. Kellgren–Lawrence grades 1 and 4 showed significant differences in flexion, adduction, and tibial internal rotation between two postures. Grades 2 and 4 showed significant differences in adduction, while grades 1 and 2, and 1 and 3 showed significant differences in tibial internal rotation between standing and supine positions.Conclusions Weight-bearing increased the three-dimensional deformities in knees with osteoarthritis. Particularly, increased tibial internal rotation was observed in patients with grades 2 and 3 compared to those with grade 1. The increase in tibial internal rotation due to weight-bearing is a key pathologic feature to detect early osteoarthritic change in knees undergoing osteoarthritis.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Takako Sugiura ◽  
Yuka Sato ◽  
Naoyuki Nakanami ◽  
Kiyomi Tsukimori

Sirenomelia is a rare congenital malformation characterized by varying degrees of fusion of the lower extremities. It is commonly associated with severe urogenital and gastrointestinal malformations; however, the association of sirenomelia with anencephaly and rachischisis totalis is extremely rare. To our knowledge, the prenatal sonographic images of this association have not been previously published. Here, we present prenatal sonographic images of this association, detected during the 17th week of gestation through combined two-dimensional, four-dimensional, and color Doppler ultrasound. Two-dimensional ultrasound images showed anencephaly, spina bifida, and possible fusion of the lower limbs. Three-dimensional HDlive rendering images confirmed the final diagnosis of sirenomelia with anencephaly and rachischisis totalis. The patient opted to undergo medical termination of pregnancy and delivered a fetus with fused lower limbs, anencephaly, and rachischisis totalis confirming the in utero imaging findings. Awareness of these rare associations will help avoid misdiagnoses and facilitate prenatal counselling. This case highlights the importance of a thorough ultrasound examination.


2017 ◽  
Vol 906 ◽  
pp. 121-130 ◽  
Author(s):  
V. Korzhyk ◽  
V. Khaskin ◽  
O. Voitenko ◽  
Volodymyr Sydorets ◽  
O. Dolianovskaia

Using of welding technologies to produce metal volume objects allows considerable lowering of their manufacturing cost at simultaneous increase in productivity, compared to SLS-and SLM-processes. The most perspective welding technology of additive manufacturing of three-dimensional objects is plasma-arc technology with application of wires or powders. It allows creating at comparatively low heat input quality volumetric products with wall thickness from 3 to 50 mm from alloys based on Fe, Ni, Co, Cu, Ti, Al, as well as composite materials, containing refractory components.


Sign in / Sign up

Export Citation Format

Share Document