polyethylene glycols
Recently Published Documents


TOTAL DOCUMENTS

710
(FIVE YEARS 62)

H-INDEX

48
(FIVE YEARS 5)

2021 ◽  
Vol 17 ◽  
pp. 2976-2982
Author(s):  
Logan Mikesell ◽  
Dhananjani N A M Eriyagama ◽  
Yipeng Yin ◽  
Bao-Yuan Lu ◽  
Shiyue Fang

The stepwise synthesis of monodisperse polyethylene glycols (PEGs) and their derivatives usually involves using an acid-labile protecting group such as DMTr and coupling the two PEG moieties together under basic Williamson ether formation conditions. Using this approach, each elongation of PEG is achieved in three steps – deprotection, deprotonation and coupling – in two pots. Here, we report a more convenient approach for PEG synthesis featuring the use of a base-labile protecting group such as the phenethyl group. Using this approach, each elongation of PEG can be achieved in two steps – deprotection and coupling – in only one pot. The deprotonation step, and the isolation and purification of the intermediate product after deprotection using existing approaches are no longer needed when the one-pot approach is used. Because the stepwise PEG synthesis usually requires multiple PEG elongation cycles, the new PEG synthesis method is expected to significantly lower PEG synthesis cost.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Jiunn-Jer Hwang ◽  
Su-Mei Huang ◽  
Wen-Yang Lin ◽  
Hsin-Jiant Liu ◽  
Cheng-Chan Chuang ◽  
...  

This study makes use of polycondensation to produce poly (L-lactic acid)-(polyethylene glycols), a biodegradable copolymer, then puts it with organically modified montmorillonite (o-MMT) going through an intercalation process to produce a series of nanocomposites of PLLA-PEG/o-MMT. The exfoliation and intercalation of the montmorillonite-layered structure could be found through X-ray diffraction and transmission electron microscopy. The lower the molecular weight of poly (ethylene glycol), the more obvious the exfoliation and dispersion. The nanocomposites were investigated under non-isothermal crystallization and isothermal crystallization separately via differential scanning calorimetry (DSC). After the adding of o-MMT to PLLA-PEG copolymers, it was found that the PLLA-PEG nanocomposites crystallized slowly and the crystallization peak tended to become broader during the non-isothermal crystallization process. Furthermore, the thermal curve of the non-isothermal melt crystallization process of PLLA-PEG copolymers with different proportions of o-MMT showed that the melting point decreased gradually with the increase of o-MMT content. In the measurement of isothermal crystallization, increasing the o-MMT of the PLLA-PEG copolymers would increase the t1/2 (crystallization half time) for crystallization and decrease the value of ΔHc. However, the present study results suggest that adding o-MMT could affect the crystallization rate of PLLA-PEG copolymers. The o-MMT silicate layer was uniformly dispersed in the PLLA-PEG copolymers, forming a nucleating agent. The crystallization rate and the regularity of the crystals changed with the increase of the o-MMT content, which further affected the crystallization enthalpies.


2021 ◽  
pp. 117707
Author(s):  
Rajesh Kumar Tiwari ◽  
Vikash Verma ◽  
Anjali Awasthi ◽  
Sanjeev Kumar Trivedi ◽  
Puneet Kumar Pandey ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 195-204
Author(s):  
I. I. Krasnyuk (Jr.) ◽  
S. R. Naryshkin ◽  
I. I. Krasnyuk ◽  
A. V. Belyatskaya ◽  
O. I. Stepanova ◽  
...  

The aim of the work is to study the effect of solid dispersions using polyethylene glycols of various molecular weights on the solubility of metronidazole in water. Metronidazole is an antimicrobial and antiprotozoal drug. Its low solubility in water limits the use of metronidazole, causing technological difficulties and reducing its bioavailability. The solubility and release of the active substance from dosage forms can be increased using the solid dispersion methods. Solid dispersions are bi- or multicomponent systems consisting of an active substance and a carrier (a highly dispersed solid phase of the active substance or molecular-dispersed solid solutions) with a partial formation of complexes of variable compositions with the carrier material.Materials and methods. The substance of metronidazole used in the experiment, was manufactured by Hubei Hongyuan Pharmaceutical Technology Co., Ltd. (China). To obtain solid dispersions, polyethylene glycols of various molar masses – 1500, 2000 and 3000 g/mol – were used. The solid dispersions were prepared by “the solvent removal method”: metronidazole and the polymer were dissolved in a minimum volume of 96% ethyl alcohol (puriss. p.a./analytical grade) at 65±2°C, and then the solvent was evaporated under vacuum to the constant weight. A vacuum pump and a water bath were used at the temperature of 40±2°C. The dissolution of the samples was studied using a magnetic stirrer with heating, and a thermostatting device. The concentration of metronidazole was determined on a spectrophotometer using quartz cuvettes at the wavelength of 318±2 nm. To filter the solutions, syringe nozzles were used, the pores were 0.45 μm, the filter was nylon. Microcrystalloscopy was performed using a microscope with a digital camera. The optical properties of the solutions were investigated using a quartz cuvette and a mirror camera (the image exposure – 20 sec).Results. Obtaining solid dispersions increases the completeness and rate of the metronidazole dissolution. The solubility of metronidazole from solid dispersions increases by 14–17% in comparison with the original substance. The complex of physical-chemical methods of the analysis, including UV spectrophotometry, microcrystalloscopy and the study of the optical properties of the obtained solutions, makes it possible to suggest the following. The increase in the solubility of metronidazole from solid dispersions is explained by the loss of crystallinity and the formation of a solid solution of the active substance and the solubilizing effect of the polymer with the formation of colloidal solutions of metronidazole at subsequent dissolution of the solid dispersion in water.Conclusion. The preparation of solid dispersions with polyethylene glycols improves the dissolution of metronidazole in water. The results obtained are planned to be used in the development of rapidly dissolving solid dosage forms of metronidazole with an accelerated release and an increased bioavailability.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2780
Author(s):  
Kavitha Godugu ◽  
Mehdi Rajabi ◽  
Shaker A. Mousa

Integrin αvβ3 receptors are overexpressed in different tumors and their associated neovascularization and hence, represent a potential cancer target. We previously synthesized a high affinity thyrointegrin αvβ3, P4000-bi-TAT (tetrac derivative), with potent anticancer properties. However, the long polydisperse PEG conjugate showed large scaleup and analytical/bioanalytical issues. Hence, in the present study, we synthesized a mono versus bi-triazole tetrac with discrete monodisperse PEG, which provided improvement in scaleup and bioanalysis. In the present study, we compared binding affinity and anticancer activates with a smaller PEG size (P1600-bi-TAT, Compound 2) and the removal of one TAT molecule (P1600-m-TAT, Compound 3) versus P4000-bi-TAT, Compound 1. The results of the selectivity and affinity of TATs showed greater affinity to integrin αvβ3. The xenograft weights and tumor cell viabilities were decreased by >90% at all doses compared to the control (ON Treatment, *** p < 0.001) in cells treated with Compounds 1, 2, and 3 in U87-Luc-treated mice. The in vivo luminescent signals of U87-luc cells reflect the proliferation and distribution of tumor cells in the animals and the maximum intensity corresponding to the maximum tumor cells that the animals could tolerate. We found that the three thyrointegrin αvβ3 antagonists exhibited optimal therapeutic efficacy against U87 or primary glioblastoma cells. Biological studies showed that decreasing the PEG linker size (1600 vs. 4000) or having mono-TAT or bi-TAT had no significant impact on their αvβ3 binding affinity, anti-angiogenesis, or overall anti-cancer efficacy.


Chemosphere ◽  
2021 ◽  
Vol 273 ◽  
pp. 129725
Author(s):  
Loris Pietrelli ◽  
Sergio Ferro ◽  
Andrea P. Reverberi ◽  
Marco Vocciante
Keyword(s):  

Author(s):  
Mahendra Kumar ◽  
Mohd Aftab Khan ◽  
Chandreshvar Prasad Yadav ◽  
Dharmendra Kumar Pandey ◽  
Dhananjay Singh

Sign in / Sign up

Export Citation Format

Share Document