reversed shear
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 19)

H-INDEX

30
(FIVE YEARS 1)

Author(s):  
Yahui Wang ◽  
Tao Wang ◽  
Shizhao Wei ◽  
Zhiyong Qiu

Abstract The parametric decay process of a reversed shear Alfv\'{e}n eigenmeode (RSAE) into a geodesic acoustic mode (GAM) and a kinetic reversed shear Alfv\'{e}n eigenmode (KRSAE) is investigated using nonlinear gyrokinetic theory. The excitation conditions mainly require the pump RSAE amplitude to exceed a certain threshold, which could be readily satisfied in burning plasmas operated in steady-state advanced scenario. This decay process can contribute to thermal plasma heating and confinement improvement.


Author(s):  
Xiaolong Zhu ◽  
Feng Wang ◽  
Wei Chen ◽  
Zhengxiong Wang

Abstract Based on the conventional tokamak HL-2A-like parameters and profiles, the linear properties and the nonlinear dynamics of non-resonant kink mode (NRK) and non-resonant fishbone instability (NRFB) in reversed shear tokamak plasmas are investigated by using the global hybrid kinetic-magnetohydrodynamic (MHD) nonlinear code M3D-K. This work mainly focuses on the effect of passing energetic-ions on the NRK and NRFB instabilities, which is different from the previous works. It is demonstrated that the NRFB can be destabilized by the passing energetic-ions when the energetic-ion beta $\beta_h$ exceeds a critical value. The transition from NRK to NRFB occurs when the energetic-ion beta $\beta_h$ increases to above a critical value. The resonance condition responsible for the excitation of NRFB is interestingly found to be satisfied at $\omega_t+\omega_p\approx\omega$, where $\omega_t$ is the toroidal motion frequency, $\omega_p$ is the poloidal motion frequency and $\omega$ is the mode frequency. The nonlinear evolutions of NRFB's mode structures and Poincar\'{e} plots are also analyzed in this work and it is found that the NRFB can induce evident energetic-ion loss/redistribution, which can degrade the performance of the plasmas. These findings are conducive to understanding the mechanisms of NRFB-induced energetic-ion loss/redistribution through nonlinear wave-particle interaction.


2021 ◽  
Author(s):  
Sizhe Duan ◽  
Guoyong Fu ◽  
Huishan Cai

Abstract Based on the experimental parameters in HL-2A tokamak, hybrid simulations have been carried out to investigate the linear stability and nonlinear dynamics of BAE. It is found that the (m/n=3/2) beta-incuced Alfvén eigenmode (BAE) is excited by co-passing energetic ions with qmin=1.5 in linear simulation, and the mode frequency is consistent with experimental meuasurement. The simulation results show that the energetic ions βh, the injection velocity v0 and orbit width parameter ρh of energetic ions are important parameters determining the drive of BAE. Furthermore, the effect of qmin (with fixed shape of q profile) is studied, and it is found that: when qmin ≤ 1.50, the excited modes are BAEs, which are located near q=1.50 rational surfaces; when qmin > 1.50, the excited modes are simillar to the reversed-shear Alfvén eigenmodes (RSAEs), which are mainly localized around q=qmin surfaces. Nonlinear simulation results show that the nonlinear dynamics of BAE is sensitive to the EP drive. For strongly driven case, firstly, redistribution and transport of engetic ions are trigged by (m/n=3/2) BAE, which raised the radial gradient of energetic ions distribution function near q=2 rational surface, and then an EPM (m/n=4/2) is driven in nonlinear phase. Finally, these two instabilities triggered significant redistribution of energetic ions, which results in the twice-repeated and mostly-downward frequency chirping of (m/n=3/2) BAE. For weakly driven case, there are no (m/n=4/2) EPM being driven and twice-repeated chirping in nonlinear phase, since the radial gradient near q=2 rational surface is small and almost unchanged.


Author(s):  
Guo Meng ◽  
Philip Lauber ◽  
Xin Wang ◽  
Zhixin Lu

Abstract In this work, the gyrokinetic eigenvalue code LIGKA, the drift-kinetic/MHD hybrid code HMGC and the gyrokinetic full-f code TRIMEG-GKX are employed to study the mode structure details of Reversed Shear Alfv\'en Eigenmodes (RSAEs). Using the parameters from an ASDEX-Upgrade plasma, a benchmark with the three different physical models for RSAE without and with Energetic Particles (EPs) is carried out. Reasonable agreement has been found for the mode frequency and the growth rate. Mode structure symmetry breaking (MSSB) is observed when EPs are included, due to the EPs' non-perturbative effects. It is found that the MSSB properties are featured by a finite radial wave phase velocity, and the linear mode structure can be well described by an analytical complex Gaussian expression $\Phi(s)=e^{- \sigma (s-s_0)^2}$ with complex parameters $\sigma$ and $s_0$, where $s$ is the normalized radial coordinate. The mode structure is distorted in opposite {manners} when the EP drive shifted from one side of $q_{min}$ to the other side, and specifically, a non-zero average radial wave number $\langle k_s\rangle$ with opposite signs is generated. The initial EP density profiles and the corresponding mode structures have been used as the input of HAGIS code to study the EP transport. The parallel velocity of EPs is generated in opposite directions, due to different values of the average radial wave number $\langle k_s\rangle$, corresponding to different initial EP density profiles with EP drive shifted away from the $q_{min}$.


2021 ◽  
Vol 61 (11) ◽  
pp. 116037
Author(s):  
Wanling Ge ◽  
Jialei Wang ◽  
Feng Wang ◽  
Zheng-Xiong Wang

2021 ◽  
Vol 87 (5) ◽  
Author(s):  
Shizhao Wei ◽  
Tao Wang ◽  
Ningfei Chen ◽  
Zhiyong Qiu

General nonlinear equations describing reversed shear Alfvén eigenmode (RSAE) self-modulation via zero-frequency zonal structure (ZFZS) generation are derived using nonlinear gyrokinetic theory, which are then applied to study the spontaneous ZFZS excitation as well as RSAE nonlinear saturation. It is found that both electrostatic zonal flow and electromagnetic zonal current can be preferentially excited by finite-amplitude RSAE, depending on specific plasma parameters. The modification to local shear Alfvén wave continuum is evaluated using the derived saturation level of zonal current, which is shown to play a comparable role in saturating RSAE with the ZFZS scattering.


2021 ◽  
Vol 16 (0) ◽  
pp. 1402089-1402089
Author(s):  
Takahiro BANDO ◽  
Hiroshi TOJO ◽  
Manabu TAKECHI ◽  
Nobuyuki AIBA ◽  
Takuma WAKATSUKI ◽  
...  

2021 ◽  
Vol 38 (3) ◽  
pp. 035201
Author(s):  
Shizhao Wei ◽  
Yahui Wang ◽  
Peiwan Shi ◽  
Wei Chen ◽  
Ningfei Chen ◽  
...  

2021 ◽  
Vol 28 (1) ◽  
pp. 012104
Author(s):  
Baofeng Gao ◽  
Huishan Cai ◽  
Feng Wang ◽  
Xiang Gao ◽  
Yuanxi Wan

Sign in / Sign up

Export Citation Format

Share Document