Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma

Author(s):  
Xiaolong Zhu ◽  
Feng Wang ◽  
Wei Chen ◽  
Zhengxiong Wang

Abstract Based on the conventional tokamak HL-2A-like parameters and profiles, the linear properties and the nonlinear dynamics of non-resonant kink mode (NRK) and non-resonant fishbone instability (NRFB) in reversed shear tokamak plasmas are investigated by using the global hybrid kinetic-magnetohydrodynamic (MHD) nonlinear code M3D-K. This work mainly focuses on the effect of passing energetic-ions on the NRK and NRFB instabilities, which is different from the previous works. It is demonstrated that the NRFB can be destabilized by the passing energetic-ions when the energetic-ion beta $\beta_h$ exceeds a critical value. The transition from NRK to NRFB occurs when the energetic-ion beta $\beta_h$ increases to above a critical value. The resonance condition responsible for the excitation of NRFB is interestingly found to be satisfied at $\omega_t+\omega_p\approx\omega$, where $\omega_t$ is the toroidal motion frequency, $\omega_p$ is the poloidal motion frequency and $\omega$ is the mode frequency. The nonlinear evolutions of NRFB's mode structures and Poincar\'{e} plots are also analyzed in this work and it is found that the NRFB can induce evident energetic-ion loss/redistribution, which can degrade the performance of the plasmas. These findings are conducive to understanding the mechanisms of NRFB-induced energetic-ion loss/redistribution through nonlinear wave-particle interaction.

2021 ◽  
Author(s):  
Hanzheng Li ◽  
Y Todo ◽  
Hao Wang ◽  
Malik Idouakass ◽  
Jialei Wang

Abstract Kinetic-magnetohydrodynamic hybrid simulations were performed to investigate the linear growth and the nonlinear evolution of off-axis fishbone mode (OFM) destabilized by trapped energetic ions in tokamak plasmas. The spatial profile of OFM is mainly composed of m/n = 2/1 mode inside the q = 2 magnetic flux surface while the m/n = 3/1 mode is predominant outside the q = 2 surface, where m and n are the poloidal and toroidal mode numbers, respectively, and q is the safety factor. The spatial profile of the OFM is a strongly shearing shape on the poloidal plane, suggesting the nonperturbative effect of the interaction with energetic ions. The frequency of the OFM in the linear growth phase is in good agreement with the precession drift frequency of trapped energetic ions, and the frequency chirps down in the nonlinear phase. Two types of resonance conditions between trapped energetic ions and OFM are found. For the first type of resonance, the precession drift frequency matches the OFM frequency, while for the second type, the sum of the precession drift frequency and the bounce frequency matches the OFM frequency. The first type of resonance is the primary resonance for the destabilization of OFM. The resonance frequency which is defined based on precession drift frequency and bounce frequency of the nonlinear orbit for each resonant particle is analyzed to understand the frequency chirping. The resonance frequency of the particles that transfer energy to the OFM chirps down, which may result in the chirping down of the OFM frequency. A detailed analysis of the energetic ion distribution function in phase space shows that the gradient of the distribution function along the E′ = const. line drives or stabilizes the instability, where E′ is a combination of energy and toroidal canonical momentum and conserved during the wave-particle interaction. The distribution function is flattened along the E′ = const. line in the nonlinear phase leading to the saturation of the instability.


2021 ◽  
Author(s):  
Sizhe Duan ◽  
Guoyong Fu ◽  
Huishan Cai

Abstract Based on the experimental parameters in HL-2A tokamak, hybrid simulations have been carried out to investigate the linear stability and nonlinear dynamics of BAE. It is found that the (m/n=3/2) beta-incuced Alfvén eigenmode (BAE) is excited by co-passing energetic ions with qmin=1.5 in linear simulation, and the mode frequency is consistent with experimental meuasurement. The simulation results show that the energetic ions βh, the injection velocity v0 and orbit width parameter ρh of energetic ions are important parameters determining the drive of BAE. Furthermore, the effect of qmin (with fixed shape of q profile) is studied, and it is found that: when qmin ≤ 1.50, the excited modes are BAEs, which are located near q=1.50 rational surfaces; when qmin > 1.50, the excited modes are simillar to the reversed-shear Alfvén eigenmodes (RSAEs), which are mainly localized around q=qmin surfaces. Nonlinear simulation results show that the nonlinear dynamics of BAE is sensitive to the EP drive. For strongly driven case, firstly, redistribution and transport of engetic ions are trigged by (m/n=3/2) BAE, which raised the radial gradient of energetic ions distribution function near q=2 rational surface, and then an EPM (m/n=4/2) is driven in nonlinear phase. Finally, these two instabilities triggered significant redistribution of energetic ions, which results in the twice-repeated and mostly-downward frequency chirping of (m/n=3/2) BAE. For weakly driven case, there are no (m/n=4/2) EPM being driven and twice-repeated chirping in nonlinear phase, since the radial gradient near q=2 rational surface is small and almost unchanged.


2021 ◽  
Vol 28 (1) ◽  
pp. 012104
Author(s):  
Baofeng Gao ◽  
Huishan Cai ◽  
Feng Wang ◽  
Xiang Gao ◽  
Yuanxi Wan

2010 ◽  
Vol 17 (8) ◽  
pp. 082512 ◽  
Author(s):  
H. D. He ◽  
J. Q. Dong ◽  
G. Y. Fu ◽  
G. Y. Zheng ◽  
Z. M. Sheng ◽  
...  

2020 ◽  
Vol 86 (3) ◽  
Author(s):  
A. Biancalani ◽  
A. Bottino ◽  
P. Lauber ◽  
A. Mishchenko ◽  
F. Vannini

Numerical simulations of Alfvén modes driven by energetic particles are performed with the gyrokinetic (GK) global particle-in-cell code ORB5. A reversed shear equilibrium magnetic field is adopted. A simplified configuration with circular flux surfaces and large aspect ratio is considered. The nonlinear saturation of beta-induced Alfvén eigenmodes (BAE) is investigated. The roles of the wave–particle nonlinearity of the different species, i.e. thermal ions, electrons and energetic ions are described, in particular for their role in the saturation of the BAE and the generation of zonal flows. The nonlinear redistribution of the electron population is found to be important in increasing the BAE saturation level and the zonal flow amplitude.


2018 ◽  
Vol 58 (9) ◽  
pp. 096028 ◽  
Author(s):  
Y.M. Hou ◽  
W. Chen ◽  
Y. Yu ◽  
M. Lesur ◽  
X.R. Duan ◽  
...  

2010 ◽  
Vol 53 (1) ◽  
pp. 015011 ◽  
Author(s):  
F D Halpern ◽  
D Leblond ◽  
H Lütjens ◽  
J-F Luciani
Keyword(s):  

2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Bhaben Kalita ◽  
Santosha K. Dwivedy

Abstract In this work, a numerical analysis has been carried out to study the nonlinear dynamics of a system with pneumatic artificial muscle (PAM). The system is modeled as a single degree-of-freedom system and the governing nonlinear equation of motion has been derived to study the various responses of the system. The system is subjected to hard excitation and hence the subharmonic and superharmonic resonance conditions have been studied. The second-order method of multiple scales (MMS) has been used to find the response, stability, and bifurcations of the system. The effect of various system parameters on the system response has been studied using time response, phase portraits, and basin of attraction. In these responses, while the saddle node bifurcation is found in both super and subharmonic resonance conditions, the Hopf bifurcation is found only in superharmonic resonance condition. By changing different system parameters, it has been shown that the response with three periods leads to chaotic response for superharmonic resonance condition. This study will find applications in the design of PAM actuators.


2005 ◽  
Vol 45 (2) ◽  
pp. 81-88 ◽  
Author(s):  
Y Hamada ◽  
A Nishizawa ◽  
T Ido ◽  
T Watari ◽  
M Kojima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document