dry milling
Recently Published Documents


TOTAL DOCUMENTS

285
(FIVE YEARS 70)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 1048 ◽  
pp. 291-297
Author(s):  
George Pramod ◽  
D. Philip Selvaraj ◽  
George Pradeep

A CNC dry milling experiment was conducted for the machining parameter optimization of two grades of Martensitic Stainless steel (MSS). Optimization is done by employing Taguchi method (S/N ratio and ANOVA). The specimens used are MSS grades 410 and 420.The experiments were designed by employing L9 orthogonal array for 3 levels of feed and spindle speeds. The impact of these parameters on cutting force was analyzed. The analysis reveals that spindle speed constitute the maximum impact on cutting force for both MSS grades. Optimum cutting parameters are obtained at 30 mm/min (feed rate) and 1500 rpm (spindle speed). Due to higher Chromium and Carbon content in AISI 420 MSS resulted higher cutting force values compared with AISI 410 MSS. Optimum values of cutting parameters are estimated for improving productivity and quality. The predicted values at optimal conditions are estimated. The results indicate a good conformity with the outcome of experiment.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2019
Author(s):  
Lulu Jing ◽  
Ming Chen ◽  
Qinglong An

Dry milling of hardened steel is an economical and environmentally friendly machining process for manufacturing a mold and die. Advances in coating technology makes the dry milling a feasible approach instead of a traditional grinding process. However, the cutting condition is particularly severe in a dry machining process. High-performance coating is desired to meet the requirement of green and highly efficient manufacturing. This study concerned the performance of AlTiN-based coatings. The effect of Al content, and the AlTiN composite coating on the cutting performance of tools are investigated in terms of friction force at the tool–chip interface, specific cutting energy, cutting temperature on the machined surface, tool wear pattern and mechanism, and surface integrity. The results show that advanced AlTiN-based coatings reduce the force and cutting energy and protect the cutters from the high cutting temperature effectively. The main wear mechanisms of the coated tools are adhesive wear, chipping induced by fatigue fracture and abrasive wear. In general, the dry milling of hardened steel with AlTiN-based coatings gains a quite satisfactory surface quality. Furthermore, AlTiN-WC/C hard-soft multilayer coating performs well in reducing cutting force, preventing adhesion wear and isolating the cutting heat, being suitable for dry milling of hardened SKD11.


2021 ◽  
Vol 135 ◽  
pp. 428-436
Author(s):  
Qixin Yuan ◽  
Yongsheng Zhang ◽  
Tao Wang ◽  
Jiawei Wang ◽  
Carlos E. Romero

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 945
Author(s):  
Ze Wu ◽  
Youqiang Xing ◽  
Jiansong Chen

Micro-textured tools were fabricated by making textures on rake faces and filling them with molybdenum disulfide. Dry milling of Ti-6Al-4V alloys was carried out with the micro-textured tools and conventional tools for comparison. Results showed that micro-textured tools can reduce the resultant cutting forces, cutting temperatures, and power consumption by approximately 15%, 10%, and 5%, respectively. Meanwhile, the developed tools can improve tool lives by approximately 20–25%. The radial width of cut, the cutting speed, and the axial depth of cut all had statistical and physical effects on the energy consumption per unit of volume in dry milling of Ti-6Al-4V alloys, while the feed per tooth seemed to have no significant effect. The mechanism for improved performance of micro-textured tools can be mainly interpreted as their self-lubricating function.


2021 ◽  
Vol 19 (6) ◽  
pp. 36-40
Author(s):  
Tarik T. Issa ◽  
Duha S. Ahmed ◽  
Sadeer M. Majeed

Ceramics type Yttrium oxide with Silicon carbide. were selected to investigate its sintered density, microstructure and electrical properties, after adding V2O5, of 100 nm grain size. Different weight percentages ranging from (0.01, 0.02, 0.03 and 0.04) were used. Dry milling applied for twelve hours. The pelletized samples were sintered at atmospheric of static air and at sintering temperature 1400 ˚C, for three hours. The crustal structure test shoes the phase which is yttrium silicon carbide Scanning electron microscopy, scan sintered microstructure. Samples after sintering were electrically investigated by measuring its capacitance, dielectric constant and their results showed increasing after added V2O5 particles at the combination Yttrium oxide 80 Wt.% -Silicon carbide 20 Wt.% with 0.04 V2O5 Wt.%.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2175
Author(s):  
Cheng Guo ◽  
Xiaohua Liu ◽  
Guang Liu

In recent years, many investigations have been devoted to fused deposition modeling (FDM) of high-performance polymer-polyetheretherketone (PEEK) and carbon-fiber-reinforced PEEK (CF/PEEK) for biomedical and aerospace applications. However, the staircase effect naturally brought about by FDM restricts further applications of 3D-printed PEEK and its composites in high-temperature molds, medical implants, and precision components, which require better or customized surface qualities. Hence, this work aimed to reduce the staircase effect and improve the surface quality of 3D-printed PEEK and CF/PEEK parts by dry milling of the fluctuant exterior surface. The co-dependency between 3D printing parameters (raster angle and layer thickness) and milling parameters (depth of cut, spindle speed, and feed rate per tooth) were investigated through experiments. The difference in removal mechanisms for PEEK and CF/PEEK was revealed. It was confirmed that the smearing effect enhanced the surface quality based on the morphology analysis and the simulation model. Both the raster angle of +45°/−45° and the small layer thickness could improve the surface quality of these 3D-printed polymers after dry milling. A large depth of cut and a large feed rate per tooth were likely to deteriorate the finished polymer surface. The spindle speed could influence the morphologies without significant changes in roughness values. Finally, a demonstration was performed to verify that dry milling of 3D-printed amorphous PEEK and CF/PEEK parts could lead to a high surface quality for critical requirements.


Author(s):  
Andrea Mussio ◽  
Maila Danielis ◽  
Núria J. Divins ◽  
Jordi Llorca ◽  
Sara Colussi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document