hypercomplex numbers
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 104 (4) ◽  
pp. 68-73
Author(s):  
A. Da¸sdemir ◽  

Certain product rules take various forms in the set of hypercomplex numbers. In this paper, we introduce a new multiplication form of the hypercomplex numbers that will be called «the Hadamard product», inspired by the analogous product in the real matrix space, and investigate some algebraic properties of that, including the norm of inequality. In particular, we extend our new definition and its applications to the complex matrix theory.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jochem Hauser ◽  
Walter Dröscher

Abstract This article, the last in a series of three articles, attempts to unravel the underlying physics of recent experiments regarding the contradictory properties of the neutron lifetime that has been a complete riddle for quite some time. So far, none of the advanced theories beyond the  Standard Models (SMs) of particle physics and cosmology have shown sufficient potential to resolve this mystery. We also try to explain the blatant contradiction between the predictions of particle physics and experiments concerning the nature and properties of the (so far undetected) dark matter and dark energy particles. To this end the novel concepts of both negative and hypercomplex matter (giving rise to the concept of matter flavor) are introduced, replacing the field of real numbers by hypercomplex numbers. This extension of the number system in physics leads to both novel internal symmetries requiring new elementary particles – as outlined in Part I and II, and to novel types of matter. Hypercomplex numbers are employed in place of the widely accepted (but never observed) concept of extra space dimensions – and, hence, also to question the corresponding concept of supersymmetry. To corroborate this claim, we report on the latest experimental searches for novel and supersymmetric elementary particles by direct searches at the Large Hadron Collider (LHC) and other colliders as well as numerous other dedicated experiments that all have come up empty handed. The same holds true for the dark matter search at European Council for Nuclear Research (CERN) [CERN Courier Team, “Funky physics at KIT,” in CERN Courier, 2020, p. 11]. In addition, new experiments looking for dark or hidden photons (e.g., FUNK at Karlsruhe Institute of Technology, CAST at CERN, and ALPS at Desy, Hamburg) are discussed that all produced negative results for the existence of the hitherto unseen but nevertheless gravitationally noticeably dark matter. In view of this contradicting outcome, we suggest a four-dimensional Minkowski spacetime, assumed to be a quasi de Sitter space, dS 1,3, complemented by a dual spacetime, denoted by DdS 1,3, in which the dark matter particles that are supposed to be of negative mass reside. This space is endowed with an imaginary time coordinate, −it and an imaginary speed of light, ic. This means that time is considered a complex quantity, but energy m(ic)2 > 0. With this construction visible and dark matter both represent positive energies, and hence gravitation makes no distinction between these two types of matter. As dark matter is supposed to reside in dual space DdS 1,3, it is principally undetectable in our spacetime. That this is evident has been confirmed by numerous astrophysical observations. As the concept of matter flavor may possibly resolve the contradictory experimental results concerning the lifetime of the neutron [J. T. Wilson, “Space based measurement of the neutron lifetime using data from the neutron spectrometer on NASA’s messenger mission,” Phys. Rev. Res., vol. 2, p. 023216, 2020] this fact could be considered as a first experimental hint for the actual existence of hypercomplex matter. In canonical gravity the conversion of electromagnetic into gravity-like fields (as surmised by Faraday and Einstein) should be possible, but not in cosmological gravity (hence these attempts did not succeed), and thus these conversion fields are outside general relativity. In addition, the concept of hypercomplex mass in conjunction with magnetic monopoles emerging from spin ice materials is discussed that may provide the enabling technology for long sought propellantless space propulsion.


Author(s):  
A.A. Seregin ◽  
A.G. Kravtsov

The article formulates the condition for the simultaneous operation of all elements of the roller freewheel clutches. Based on this condition, a functional dependence of the profiling involute line of the sprocket working surface was obtained, ensuring the constancy of the angle of roller jamming, regardless of their size. The algebra of n-dimensional hypercomplex numbers is used to describe the isometry of the profiling involute line in space. This mathematical tool is used to simplify the translation of the involute surface equation into program blocks of numerically controlled machine. The formulas are given to determine the optimal values of the tolerances for the dimensions of the clutch parts. Requirements for the accuracy of manufacturing clutch parts have been developed. An express method for calculating the operational reliability of freewheeling clutches is proposed. The results of calculations by the proposed method are in qualitative agreement with the results of observations of the clutch operation and experimental data.


Author(s):  
Roman Volianskyi ◽  
Vitaliy Kuznetsov ◽  
Valeriy Kuznetsov ◽  
Oleksandr Ostapchuk ◽  
Viktor Artemchuk ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 938
Author(s):  
Jeremiah Bill ◽  
Lance Champagne ◽  
Bruce Cox ◽  
Trevor Bihl

In recent years, real-valued neural networks have demonstrated promising, and often striking, results across a broad range of domains. This has driven a surge of applications utilizing high-dimensional datasets. While many techniques exist to alleviate issues of high-dimensionality, they all induce a cost in terms of network size or computational runtime. This work examines the use of quaternions, a form of hypercomplex numbers, in neural networks. The constructed networks demonstrate the ability of quaternions to encode high-dimensional data in an efficient neural network structure, showing that hypercomplex neural networks reduce the number of total trainable parameters compared to their real-valued equivalents. Finally, this work introduces a novel training algorithm using a meta-heuristic approach that bypasses the need for analytic quaternion loss or activation functions. This algorithm allows for a broader range of activation functions over current quaternion networks and presents a proof-of-concept for future work.


Author(s):  
Dr. Indrajit Patra , Et. al.

The study shall seek to explore the deep, underlying correspondence between the mathematical world of pure numbers and our physical reality. The study begins by pointing out that while the familiar, one-dimensional real numbers quantify many aspects of our day-to-day reality, complex numbers provide the mathematical foundations of quantum mechanics and also describe the behavior of more complicated quantum networks and multi-party correlations, and quaternions underlie Einsteinian special theory of relativity, and then poses the question whether the octonions could play a similar role in constructing a grander theory of our universe. The study then points out that by increasing the level of abstraction and generalization of axiomatic assumptions, we could construct a more powerful number system based on octonions, the seditions, or even other hypercomplex numbers so that we may more accurately describe the universe in its totality.


2021 ◽  
Vol 4 (2(83)) ◽  
pp. 33-37
Author(s):  
A. Ibrayev ◽  
A. Alkhan ◽  
A. Toktar

The article is dedicated to the problems of using multidimensional numbers for mathematical and computer modeling of complex physical processes and the design of knowledge-intensive devices, including digital image processing. The emphasis is on the issues of building the methods for processing three-dimensional signals. It is proposed to use three-dimensional variables presented in the form of hypercomplex numbers to formulate the three-dimensional Fourier transformation forms, which allows to analyze and process three-dimensional signals.


2021 ◽  
pp. 1-11
Author(s):  
Masaki Kobayashi

Hopfield neural networks have been extended using hypercomplex numbers. The algebra of bicomplex numbers, also referred to as commutative quaternions, is a number system of dimension 4. Since the multiplication is commutative, many notions and theories of linear algebra, such as determinant, are available, unlike quaternions. A bicomplex-valued Hopfield neural network (BHNN) has been proposed as a multistate neural associative memory. However, the stability conditions have been insufficient for the projection rule. In this work, the stability conditions are extended and applied to improvement of the projection rule. The computer simulations suggest improved noise tolerance.


2021 ◽  
Vol 1 (4) ◽  
pp. 177-187
Author(s):  
Daizhan Cheng ◽  
◽  
Zhengping Ji ◽  
Jun-e Feng ◽  
Shihua Fu ◽  
...  

<abstract><p>The set of associative and commutative hypercomplex numbers, called the perfect hypercomplex algebras (PHAs) is investigated. Necessary and sufficient conditions for an algebra to be a PHA via semi-tensor product (STP) of matrices are reviewed. The zero sets are defined for non-invertible hypercomplex numbers in a given PHA, and characteristic functions are proposed for calculating zero sets. Then PHA of various dimensions are considered. First, classification of $ 2 $-dimensional PHAs are investigated. Second, all the $ 3 $-dimensional PHAs are obtained and the corresponding zero sets are calculated. Finally, $ 4 $- and higher dimensional PHAs are also considered.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document