localization length
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 37)

H-INDEX

27
(FIVE YEARS 2)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Bernard R. Matis ◽  
Steven W. Liskey ◽  
Nicholas T. Gangemi ◽  
Aaron D. Edmunds ◽  
William B. Wilson ◽  
...  

AbstractAnderson localization arises from the interference of multiple scattering paths in a disordered medium, and applies to both quantum and classical waves. Soft matter provides a unique potential platform to observe localization of non-interacting classical waves because of the order of magnitude difference in speed between fast and slow waves in conjunction with the possibility to achieve strong scattering over broad frequency bands while minimizing dissipation. Here, we provide long sought evidence of a localized phase spanning up to 246 kHz for fast (sound) waves in a soft elastic medium doped with resonant encapsulated microbubbles. We find the transition into the localized phase is accompanied by an anomalous decrease of the mean free path, which provides an experimental signature of the phase transition. At the transition, the decrease in the mean free path with changing frequency (i.e., disorder strength) follows a power law with a critical exponent near unity. Within the localized phase the mean free path is in the range 0.4–1.0 times the wavelength, the transmitted intensity at late times is well-described by the self-consistent localization theory, and the localization length decreases with increasing microbubble volume fraction. Our work sets the foundation for broadband control of localization and the associated phase transition in soft matter, and affords a comparison of theory to experiment.


2021 ◽  
Author(s):  
Md. Sherajul Islam ◽  
Ashraful Hossain Howlader ◽  
Rongkun Zheng ◽  
Catherine Stampfl ◽  
Jeongwon Park ◽  
...  

Abstract We explored the mixing effect of 10B isotopes and boron (B) or nitrogen (N) vacancies on the atomic vibrational properties of (10, 0) single-wall boron nitride nanotubes (BNNT). The forced oscillation technique was employed to evaluate the phonon modes for the entire range (0-100%) of 10B isotopes and atomic vacancy densities ranging from 0 to 30%. With increasing isotope densities, we noticed a blue-shift of the Raman active A1 phonon peak, whereas an increased density of mixed or independent B and N vacancies resulted in the emergence of a new low-frequency peak and the annihilation of the A1 peak in the phonon density-of-states. High-energy optical phonons were localized as a result of both 10B isotopes and the presence of mixing defects. We generated typical mode patterns for different defects to show the phonon localization processes due to the defects. We found an asymmetrical nature of the localization length with increasing 10B isotope content, which corresponds well with the isotope inherited localization length of carbon nanotubes and mono-layer graphene. The localization length falls abruptly with the increase in concentration of both atomic vacancies (B or N) and mixing defects (10B isotope and vacancies). These findings are critical for understanding heat conduction and nanoscopic vibrational investigations like tip-enhanced Raman spectra in BNNT, which can map local phonon energies.


2021 ◽  
Vol 104 (23) ◽  
Author(s):  
Bogdan Guster ◽  
Pedro Melo ◽  
Bradley A. A. Martin ◽  
Véronique Brousseau-Couture ◽  
Joao C. de Abreu ◽  
...  

Abstract Recent numerical weather prediction systems have significantly improved medium-range forecasts by implementing hybrid background error covariance, for which climatological (static) and ensemble-based (flow-dependent) error covariance are combined. While the hybrid approach has been investigated mainly in variational systems, this study aims at exploring methods for implementing the hybrid approach for the local ensemble transform Kalman filter (LETKF). Following Kretchmer et al. (2015), the present study constructed hybrid background error covariance by adding collections of climatological perturbations to the forecast ensemble. In addition, this study proposes a new localization method that attenuates the ensemble perturbation (Z-localization) instead of inflating observation error variance (R-localization). A series of experiments with a simplified global atmospheric model revealed that the hybrid LETKF resulted in smaller forecast errors than the LETKF, especially in sparsely observed regions. Due to the larger ensemble enabled by the hybrid approach, optimal localization length scales for the hybrid LETKF were larger than those for the LETKF. With the LETKF, the Z-localization resulted in similar forecast errors as the R-localization. However, Z-localization has an advantage in enabling to apply different localization scales for flow-dependent perturbation and climatological static perturbations with the hybrid LETKF. The optimal localization for climatological perturbations was slightly larger than that for flow-dependent perturbations. This study proposes Optimal EigenDecomposition (OED) ETKF formulation to reduce computational costs. The computational expense of the OED ETKF formulation became significantly smaller than that of standard ETKF formulations as the number of climatological perturbations was increased beyond a few hundred.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
V. Humbert ◽  
M. Ortuño ◽  
A. M. Somoza ◽  
L. Bergé ◽  
L. Dumoulin ◽  
...  

AbstractBeyond a critical disorder, two-dimensional (2D) superconductors become insulating. In this Superconductor-Insulator Transition (SIT), the nature of the insulator is still controversial. Here, we present an extensive experimental study on insulating NbxSi1−x close to the SIT, as well as corresponding numerical simulations of the electrical conductivity. At low temperatures, we show that electronic transport is activated and dominated by charging energies. The sample thickness variation results in a large spread of activation temperatures, fine-tuned via disorder. We show numerically and experimentally that this originates from the localization length varying exponentially with thickness. At the lowest temperatures, there is an increase in activation energy related to the temperature at which this overactivated regime is observed. This relation, observed in many 2D systems shows that conduction is dominated by single charges that have to overcome the gap when entering superconducting grains.


2021 ◽  
Vol 6 (4) ◽  
pp. 38
Author(s):  
Seyfan Kelil Shukri ◽  
Lemi Demeyu Deja

We investigate the transport properties of charge carriers in disordered organic semiconductors using a model that relates a mobility with charge carriers (not with small polarons) hopping by thermal activation. Considering Miller and Abrahams expression for a hopping rate of a charge carrier between localized states of a Gaussian distributed energies, we employ Monte Carlo simulation methods, and calculate the average mobility of finite charge carriers focusing on a lower density region where the mobility was shown experimentally to be independent of the density. There are Monte Carlo simulation results for density dependence of mobility reported for hopping on regularly spaced states neglecting the role of spatial disorder, which does not fully mimic the hopping of charge carriers on randomly distributed states in disordered system as shown in recent publications. In this work we include the spatial disorder and distinguish the effects of electric field and density which are not separable in the experiment, and investigate the influence of density and electric field on mobility at different temperatures comparing with experimental results and that found in the absence of the spatial disorder. Moreover, we analyze the role of density and localization length on temperature and electric field dependence of mobility. Our results also give additional insight regarding the value of localization length that has been widely used as 0.1b where b is a lattice sites spacing.


2021 ◽  
Vol 2021 (11) ◽  
pp. 113204 ◽  
Author(s):  
Gaëtan Cane ◽  
Junaid Majeed Bhat ◽  
Abhishek Dhar ◽  
Cédric Bernardin

Abstract We consider a harmonic chain of N oscillators in the presence of a disordered magnetic field. The ends of the chain are connected to heat baths and we study the effects of the magnetic field randomness on heat transport. The disorder, in general, causes localization of the normal modes, due to which a system becomes insulating. However, for this system, the localization length diverges as the normal mode frequency approaches zero. Therefore, the low frequency modes contribute to the transmission, T N ( ω ) , and the heat current goes down as a power law with the system size, N. This power law is determined by the small frequency behaviour of some Lyapunov exponents, λ(ω), and the transmission in the thermodynamic limit, T ∞ ( ω ) . While it is known that in the presence of a constant magnetic field T ∞ ( ω ) ∼ ω 3 / 2 , ω 1 / 2 depending on the boundary conditions, we find that the Lyapunov exponent for the system behaves as λ(ω) ∼ ω for B ≠ 0 and λ(ω) ∼ ω 2/3 for B = 0 . Therefore, we obtain different power laws for current vs N depending on B and the boundary conditions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Taira Giordani ◽  
Walter Schirmacher ◽  
Giancarlo Ruocco ◽  
Marco Leonetti

Anderson localization is an interference effect yielding a drastic reduction of diffusion—including complete hindrance—of wave packets such as sound, electromagnetic waves, and particle wave functions in the presence of strong disorder. In optics, this effect has been observed and demonstrated unquestionably only in dimensionally reduced systems. In particular, transverse localization (TL) occurs in optical fibers, which are disordered orthogonal to and translationally invariant along the propagation direction. The resonant and tube-shaped localized states act as micro-fiber-like single-mode transmission channels. Since the proposal of the first TL models in the early eighties, the fabrication technology and experimental probing techniques took giant steps forwards: TL has been observed in photo-refractive crystals, in plastic optical fibers, and also in glassy platforms, while employing direct laser writing is now possible to tailor and “design” disorder. This review covers all these aspects that are today making TL closer to applications such as quantum communication or image transport. We first discuss nonlinear optical phenomena in the TL regime, enabling steering of optical communication channels. We further report on an experiment testing the traditional, approximate way of introducing disorder into Maxwell’s equations for the description of TL. We find that it does not agree with our findings for the average localization length. We present a new theory, which does not involve an approximation and which agrees with our findings. Finally, we report on some quantum aspects, showing how a single-photon state can be localized in some of its inner degrees of freedom and how quantum phenomena can be employed to secure a quantum communication channel.


2021 ◽  
Vol 13 (15) ◽  
pp. 3020
Author(s):  
Yueming Cheng ◽  
Tie Dai ◽  
Daisuke Goto ◽  
Hiroshi Murakami ◽  
Mayumi Yoshida ◽  
...  

Dust aerosols have great effects on global and regional climate systems. The Global Change Observation Mission-Climate (GCOM-C), also known as SHIKISAI, which was launched on 23 December 2017 by the Japan Aerospace Exploration Agency (JAXA), is a next-generation Earth observation satellite that is used for climate studies. The Second-Generation Global Imager (SGLI) aboard GCOM-C enables the retrieval of more precious global aerosols. Here, the first assimilation study of the aerosol optical thicknesses (AOTs) at 500 nm observed by this new satellite is performed to investigate a severe dust storm in spring over East Asia during 28–31 March 2018. The aerosol observation assimilation system is an integration of the four-dimensional local ensemble transform Kalman filter (4D-LETKF) and the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-Hydrostatic Icosahedral Atmospheric Model (NICAM). Through verification with the independent observations from the Aerosol Robotic Network (AERONET) and the Asian Dust and Aerosol Lidar Observation Network (AD-Net), the results demonstrate that the assimilation of the GCOM-C aerosol observations can significantly enhance Asian dust storm simulations. The dust characteristics over the regions without GCOM-C observations are better revealed from assimilating the adjacent observations within the localization length, suggesting the importance of the technical advances in observation and assimilation, which are helpful in clarifying the temporal–spatial structure of Asian dust and which could also improve the forecasting of dust storms, climate prediction models, and aerosol reanalysis.


Sign in / Sign up

Export Citation Format

Share Document