focal excitation
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 7 (2) ◽  
pp. 17-20
Author(s):  
Christian Quester ◽  
Matthias Heinke ◽  
Johannes Hörth

Abstract Patients with focal ventricular tachycardia are at risk of hemodynamic failure and if no treatment is provided the mortality rate can exceed 30%. Therefore, medical professionals must be adequately trained in the management of these conditions. To achieve the best treatment, the origin of the abnormality should be known, as well as the course of the disease. This study provides an opportunity to visualize various focal ventricular tachycardias using the Offenburg heart rhythm model. Modeling and simulation of focal ventricular tachycardias in the Offenburg heart rhythm model was performed using CST (Computer Simulation Technology) software from Dessault Systèms. A bundle of nerve tissue in different regions in the left and right ventricle was defined as the focus in the already existing heart rhythm model. This ultimately served as the origin of the focal excitation sites. For the simulations, the heart rhythm model was divided into a mesh consisting of 5354516 tetrahedra, which is required to calculate the electric field lines. The simulations in the Offenburg heart rhythm model were able to successfully represent the progression of focal ventricular tachycardia in the heart using measured electrical field lines. The simulation results were realized as an animated sequence of images running in real time at a frame rate of 20 frames per second. By changing the frame rate, these simulations can additionally be produced at different speeds. The Offenburg heart rhythm model allows visualization of focal ventricular arrhythmias using computer simulations. By selecting the frame rate, the speed of the simulation results can be adjusted accordingly to visualize the electric field lines of focal ventricular tachycardias in more detail. The static and dynamic simulation results could be used in the future for teaching and research, including the training of medical professionals.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Biagio Mandracchia ◽  
Jeonghwan Son ◽  
Shu Jia

We report an optofluidic microscope that exploits multi-focal excitation using the fluidic motion of the specimens for super-resolution, live-cell imaging.


2002 ◽  
Vol 282 (5) ◽  
pp. H1915-H1923 ◽  
Author(s):  
Moshe Swissa ◽  
Zhilin Qu ◽  
Toshihiko Ohara ◽  
Moon-Hyoung Lee ◽  
Shien-Fong Lin ◽  
...  

The focal source hypothesis of ventricular fibrillation (VF) posits that rapid activation from a focal source, rather than action potential duration (APD) restitution properties, is responsible for the maintenance of VF. We injected aconitine (100 μg) into normal isolated perfused swine right ventricles (RVs) stained with 4-{β-[2-(di- n-butylamino)-6-naphthyl]vinyl}pyridinium (di-4-ANEPPS) for optical mapping studies. Within 97 ± 163 s, aconitine induced ventricular tachycardia (VT) with a mean cycle length 268 ± 37 ms, which accelerated before converting to VF. Drugs that flatten the APD restitution slope, including diacetyl monoxime (10–20 mM, n = 6), bretylium (10–20 μg/ml, n = 3), and verapamil (2–4 μg/ml, n = 3), reversibly converted VF to VT in all cases. In two RVs, VF persisted despite of the excision of the aconitine site. Simulations in two-dimensional cardiac tissue showed that once VF was initiated, it remained sustained even after the “aconitine” site was eliminated. In this model of focal source VF, the VT-to-VF transition occurred due to a wave break outside the aconitine site, and drugs that flattened the APD restitution slope converted VF to VT despite continuous activation from aconitine site.


Sign in / Sign up

Export Citation Format

Share Document