force constants
Recently Published Documents


TOTAL DOCUMENTS

1825
(FIVE YEARS 37)

H-INDEX

80
(FIVE YEARS 2)

2022 ◽  
Vol 64 (2) ◽  
pp. 223
Author(s):  
Ф.С. Хоробрых ◽  
В.Д. Чуркин ◽  
М.Ю. Попов

We study the effect of high hydrostatic pressure on 3D polymerized fullerite C60. We do not observe further structural changes until 150 GPa after a formation of 3D C60 under hydrostatic pressure 28 GPa. It is experimentally shown that the obtained samples consist of different clusters formed by sp3 bonds with a different set of force constants, the values of which vary within 20% and exceed the diamond force constants by the factor of 1.3–1.5. The influence of the exposure of laser radiation on the process of 3D polymerization of C60 under pressure was found. Increasing of the exposure by the factor of 15 leads to a decrease in the bulk modulus of 3D C60 from 610 GPa to 504 GPa.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stressenergy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r -4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stressenergy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r -4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stressenergy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r -4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stressenergy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r -4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stress-energy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r-4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stress-energy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r-4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stress-energy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r-4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


Sign in / Sign up

Export Citation Format

Share Document