alpha oscillations
Recently Published Documents


TOTAL DOCUMENTS

375
(FIVE YEARS 136)

H-INDEX

51
(FIVE YEARS 12)

2021 ◽  
Vol 119 (1) ◽  
pp. e2110868119
Author(s):  
Kevin J. Clancy ◽  
Jeremy A. Andrzejewski ◽  
Yuqi You ◽  
Jens T. Rosenberg ◽  
Mingzhou Ding ◽  
...  

The default mode network (DMN) is the most-prominent intrinsic connectivity network, serving as a key architecture of the brain’s functional organization. Conversely, dysregulated DMN is characteristic of major neuropsychiatric disorders. However, the field still lacks mechanistic insights into the regulation of the DMN and effective interventions for DMN dysregulation. The current study approached this problem by manipulating neural synchrony, particularly alpha (8 to 12 Hz) oscillations, a dominant intrinsic oscillatory activity that has been increasingly associated with the DMN in both function and physiology. Using high-definition alpha-frequency transcranial alternating current stimulation (α-tACS) to stimulate the cortical source of alpha oscillations, in combination with simultaneous electroencephalography and functional MRI (EEG-fMRI), we demonstrated that α-tACS (versus Sham control) not only augmented EEG alpha oscillations but also strengthened fMRI and (source-level) alpha connectivity within the core of the DMN. Importantly, increase in alpha oscillations mediated the DMN connectivity enhancement. These findings thus identify a mechanistic link between alpha oscillations and DMN functioning. That transcranial alpha modulation can up-regulate the DMN further highlights an effective noninvasive intervention to normalize DMN functioning in various disorders.


2021 ◽  
Author(s):  
Cecile Fabio ◽  
Romeo Salemme ◽  
Eric Koun ◽  
Alessandro Farne ◽  
Luke E. Miller

The sense of touch is not restricted to the body but can also extend to external objects. When we use a hand-held tool to contact an object, we feel the touch on the tool and not in the hand holding the tool. The ability to perceive touch on a tool actually extends along its entire surface, allowing the user to accurately localize where it is touched similarly as they would on their body. While the neural mechanisms underlying the ability to localize touch on the body have been largely investigated, those allowing to localize touch on a tool are still unknown. We aimed to fill this gap by recording the EEG signal of participants while they localized tactile stimuli on a hand-held rod. We focused on oscillatory activity in the alpha (7-14 Hz) and beta (15-30 Hz) range, as they have been previously linked to distinct spatial codes used to localize touch on the body. Beta activity reflects the mapping of touch in skin-based coordinates, whereas alpha activity reflects the mapping of touch in external space. We found that alpha activity was solely modulated by the location of tactile stimuli applied on a hand-held rod. Source reconstruction suggested that this alpha power modulation was localized in a network of fronto-parietal regions previously implicated in higher-order tactile and spatial processing. These findings are the first to implicate alpha oscillations in tool-extended sensing and suggest an important role for processing touch in external space when localizing touch on a tool.


Author(s):  
Evelien De Groote ◽  
Ehsan Eqlimi ◽  
Annelies Bockstael ◽  
Dick Botteldooren ◽  
Patrick Santens ◽  
...  

Author(s):  
Deniz Kumral ◽  
Elena Cesnaite ◽  
Frauke Beyer ◽  
Simon M. Hofmann ◽  
Tilman Hensch ◽  
...  

2021 ◽  
Vol 168 ◽  
pp. S186
Author(s):  
Mert Küçük ◽  
Birgit Mathes ◽  
Canan Başar-Eroğlu

2021 ◽  
pp. JN-RM-1114-21
Author(s):  
Ying Joey Zhou ◽  
Luca Iemi ◽  
Jan-Mathijs Schoffelen ◽  
Floris P. de Lange ◽  
Saskia Haegens

Sign in / Sign up

Export Citation Format

Share Document