scholarly journals Age-Related Alterions in Theta and Alpha Oscillations During Perceptual Reversals

2021 ◽  
Vol 168 ◽  
pp. S186
Author(s):  
Mert Küçük ◽  
Birgit Mathes ◽  
Canan Başar-Eroğlu
2020 ◽  
Author(s):  
Deniz Kumral ◽  
Elena Cesnaite ◽  
Frauke Beyer ◽  
Simon M. Hofmann ◽  
Tilman Hensch ◽  
...  

AbstractWhite matter hyperintensities (WMHs) in the cerebral white matter and attenuation of alpha oscillations (AO; 7–13 Hz) occur with the advancing age. However, a crucial question remains, whether changes in AO relate to aging per se or they rather reflect the impact of age-related neuropathology like WMHs. In this study, using a large cohort (N=907) of elderly participants (60-80 years), we assessed relative alpha power (AP), individual alpha peak frequency (IAPF) and long-range temporal correlations (LRTC) from resting-state EEG. We further associated these parameters with voxel-wise WMHs from 3T MRI. We found that higher prevalence of WMHs in the superior and posterior corona radiata was related to elevated relative AP, with strongest correlations in the bilateral occipital cortex, even after controlling for potential confounding factors. In contrast, we observed no significant relation of probability of WMH occurrence with IAPF and LRTC. We argue that the WMH-associated increase of AP reflects generalized and likely compensatory changes of AO leading to a larger number of synchronously recruited neurons.


2018 ◽  
Author(s):  
Pau A. Packard ◽  
Tineke K. Steiger ◽  
Lluis Fuentemilla ◽  
Nico Bunzeck

AbstractLong-term memory can improve when incoming information is congruent with known semantic information. This so-called congruence effect has widely been shown in younger adults but age-related changes and neural mechanisms remain unclear. Here, congruence improved recognition memory in younger and older adults (i.e. congruency effect), but – importantly – this effect decreased with age. Electroencephalography data show that, in both groups, congruence led to widespread differences in event-related potentials (ERPs) and alpha-beta oscillations (8-30 Hz), known to support semantic processing. Importantly, these ERP differences predicted increases in memory performance, especially for congruent items. Finally, age-related differences in memory were accompanied by a positive ERP and later decrease in theta-alpha (5-13 Hz) during encoding, which were greater in the younger group. Together, although semantic congruence generally increases long-term memory, the effect is less pronounced in the elderly. At the neural level, theta-alpha oscillations, previously linked to memory and attentional processes, provide a mechanistic explanation for such an age-related effect.


2019 ◽  
Author(s):  
Sabrina Sghirripa ◽  
Lynton Graetz ◽  
Ashley Merkin ◽  
Nigel C Rogasch ◽  
John G Semmler ◽  
...  

AbstractWorking memory (WM) is vulnerable to age-related decline, particularly under high loads. Visual alpha oscillations contribute to WM performance in younger adults, and although alpha decreases in power and frequency with age, it is unclear if alpha activity supports WM in older adults. We recorded electroencephalography (EEG) while 24 younger (aged 18-35 years) and 30 older (aged 50-86) adults performed a modified Sternberg task with varying load conditions. Older adults demonstrated slower reaction times at all loads, but there were no significant age differences in accuracy. Regardless of age, alpha power decreased, and alpha frequency increased with load during encoding, and the magnitude of alpha suppression during retention was larger at higher loads. While alpha power during retention was lower than fixation in older, but not younger adults, the relative change from fixation was not significantly different between age groups. Individual differences in alpha power did not predict performance for either age groups or at any WM loads. Future research should elaborate the functional significance of alpha power and frequency changes that accompany WM performance in cognitive ageing.


2021 ◽  
Author(s):  
Marius Tröndle ◽  
Tzvetan Popov ◽  
Andreas Pedroni ◽  
Christian Pfeiffer ◽  
Zofia Barańczuk-Turska ◽  
...  

Increasing life expectancy is prompting the need to understand how the brain changes during healthy aging. Research utilizing Electroencephalography (EEG) has found that the power of alpha oscillations decrease from adulthood on. However, non-oscillatory (aperiodic) components in the data may confound results and thus require re-investigation of these findings. The present report aims at analyzing a pilot and two additional independent samples (total N = 533) of resting-state EEG from healthy young and elderly individuals. A newly developed algorithm will be utilized that allows the decomposition of the measured signal into aperiodic and aperiodic-adjusted signal components. By using multivariate sequential Bayesian updating of the age effect in each signal component, evidence across the datasets will be accumulated. It is hypothesized that previously reported age-related alpha power differences will disappear when absolute power is adjusted for the aperiodic signal component. Consequently, age-related differences in the intercept and slope of the aperiodic signal component are expected. Importantly, using a battery of neuropsychological tests, we will assess how the previously reported relationship between cognitive functions and alpha oscillations changes when taking the aperiodic signal into account; this will be done on data of the young and aged individuals separately. The aperiodic signal components and adjusted alpha parameters could potentially offer a promising biomarker for cognitive decline, thus finally the test–retest reliability of the aperiodic and aperiodic-adjusted signal components will be assessed.


2017 ◽  
Vol 127 (2) ◽  
pp. 293-306 ◽  
Author(s):  
Johanna M. Lee ◽  
Oluwaseun Akeju ◽  
Kristina Terzakis ◽  
Kara J. Pavone ◽  
Hao Deng ◽  
...  

Abstract Background In adults, frontal electroencephalogram patterns observed during propofol-induced unconsciousness consist of slow oscillations (0.1 to 1 Hz) and coherent alpha oscillations (8 to 13 Hz). Given that the nervous system undergoes significant changes during development, anesthesia-induced electroencephalogram oscillations in children may differ from those observed in adults. Therefore, we investigated age-related changes in frontal electroencephalogram power spectra and coherence during propofol-induced unconsciousness. Methods We analyzed electroencephalogram data recorded during propofol-induced unconsciousness in patients between 0 and 21 yr of age (n = 97), using multitaper spectral and coherence methods. We characterized power and coherence as a function of age using multiple linear regression analysis and within four age groups: 4 months to 1 yr old (n = 4), greater than 1 to 7 yr old (n = 16), greater than 7 to 14 yr old (n = 30), and greater than 14 to 21 yr old (n = 47). Results Total electroencephalogram power (0.1 to 40 Hz) peaked at approximately 8 yr old and subsequently declined with increasing age. For patients greater than 1 yr old, the propofol-induced electroencephalogram structure was qualitatively similar regardless of age, featuring slow and coherent alpha oscillations. For patients under 1 yr of age, frontal alpha oscillations were not coherent. Conclusions Neurodevelopmental processes that occur throughout childhood, including thalamocortical development, may underlie age-dependent changes in electroencephalogram power and coherence during anesthesia. These age-dependent anesthesia-induced electroencephalogram oscillations suggest a more principled approach to monitoring brain states in pediatric patients.


Author(s):  
W. Krebs ◽  
I. Krebs

Various inclusion bodies occur in vertebrate retinal photoreceptor cells. Most of them are membrane bound and associated with phagocytosis or they are age related residual bodies. We found an additional inclusion body in foveal cone cells of the baboon (Papio anubis) retina.The eyes of a 15 year old baboon were fixed by immersion in cacodylate buffered glutaraldehyde (2%)/formaldehyde (2%) as described in detail elsewhere . Pieces of retina from various locations, including the fovea, were embedded in epoxy resin such that radial or tangential sections could be cut.Spindle shaped inclusion bodies were found in the cytoplasm of only foveal cones. They were abundant in the inner segments, close to the external limiting membrane (Fig. 1). But they also occurred in the outer fibers, the perikarya, and the inner fibers (Henle’s fibers) of the cone cells. The bodies were between 0.5 and 2 μm long. Their central diameter was 0.2 to 0. 3 μm. They always were oriented parallel to the long axis of the cone cells. In longitudinal sections (Figs. 2,3) they seemed to have a fibrous skeleton that, in cross sections, turned out to consist of plate-like (Fig.4) and tubular profiles (Fig. 5).


2013 ◽  
Vol 55 ◽  
pp. 119-131 ◽  
Author(s):  
Bernadette Carroll ◽  
Graeme Hewitt ◽  
Viktor I. Korolchuk

Autophagy is a process of lysosome-dependent intracellular degradation that participates in the liberation of resources including amino acids and energy to maintain homoeostasis. Autophagy is particularly important in stress conditions such as nutrient starvation and any perturbation in the ability of the cell to activate or regulate autophagy can lead to cellular dysfunction and disease. An area of intense research interest is the role and indeed the fate of autophagy during cellular and organismal ageing. Age-related disorders are associated with increased cellular stress and assault including DNA damage, reduced energy availability, protein aggregation and accumulation of damaged organelles. A reduction in autophagy activity has been observed in a number of ageing models and its up-regulation via pharmacological and genetic methods can alleviate age-related pathologies. In particular, autophagy induction can enhance clearance of toxic intracellular waste associated with neurodegenerative diseases and has been comprehensively demonstrated to improve lifespan in yeast, worms, flies, rodents and primates. The situation, however, has been complicated by the identification that autophagy up-regulation can also occur during ageing. Indeed, in certain situations, reduced autophagosome induction may actually provide benefits to ageing cells. Future studies will undoubtedly improve our understanding of exactly how the multiple signals that are integrated to control appropriate autophagy activity change during ageing, what affect this has on autophagy and to what extent autophagy contributes to age-associated pathologies. Identification of mechanisms that influence a healthy lifespan is of economic, medical and social importance in our ‘ageing’ world.


2020 ◽  
Vol 29 (2) ◽  
pp. 864-872
Author(s):  
Fernanda Borowsky da Rosa ◽  
Adriane Schmidt Pasqualoto ◽  
Catriona M. Steele ◽  
Renata Mancopes

Introduction The oral cavity and pharynx have a rich sensory system composed of specialized receptors. The integrity of oropharyngeal sensation is thought to be fundamental for safe and efficient swallowing. Chronic obstructive pulmonary disease (COPD) patients are at risk for oropharyngeal sensory impairment due to frequent use of inhaled medications and comorbidities including gastroesophageal reflux disease. Objective This study aimed to describe and compare oral and oropharyngeal sensory function measured using noninstrumental clinical methods in adults with COPD and healthy controls. Method Participants included 27 adults (18 men, nine women) with a diagnosis of COPD and a mean age of 66.56 years ( SD = 8.68). The control group comprised 11 healthy adults (five men, six women) with a mean age of 60.09 years ( SD = 11.57). Spirometry measures confirmed reduced functional expiratory volumes (% predicted) in the COPD patients compared to the control participants. All participants completed a case history interview and underwent clinical evaluation of oral and oropharyngeal sensation by a speech-language pathologist. The sensory evaluation explored the detection of tactile and temperature stimuli delivered by cotton swab to six locations in the oral cavity and two in the oropharynx as well as identification of the taste of stimuli administered in 5-ml boluses to the mouth. Analyses explored the frequencies of accurate responses regarding stimulus location, temperature and taste between groups, and between age groups (“≤ 65 years” and “> 65 years”) within the COPD cohort. Results We found significantly higher frequencies of reported use of inhaled medications ( p < .001) and xerostomia ( p = .003) in the COPD cohort. Oral cavity thermal sensation ( p = .009) was reduced in the COPD participants, and a significant age-related decline in gustatory sensation was found in the COPD group ( p = .018). Conclusion This study found that most of the measures of oral and oropharyngeal sensation remained intact in the COPD group. Oral thermal sensation was impaired in individuals with COPD, and reduced gustatory sensation was observed in the older COPD participants. Possible links between these results and the use of inhaled medication by individuals with COPD are discussed.


1992 ◽  
Vol 35 (4) ◽  
pp. 892-902 ◽  
Author(s):  
Robert Allen Fox ◽  
Lida G. Wall ◽  
Jeanne Gokcen

This study examined age-related differences in the use of dynamic acoustic information (in the form of formant transitions) to identify vowel quality in CVCs. Two versions of 61 naturally produced, commonly occurring, monosyllabic English words were created: a control version (the unmodified whole word) and a silent-center version (in which approximately 62% of the medial vowel was replaced by silence). A group of normal-hearing young adults (19–25 years old) and older adults (61–75 years old) identified these tokens. The older subjects were found to be significantly worse than the younger subjects at identifying the medial vowel and the initial and final consonants in the silent-center condition. These results support the hypothesis of an age-related decrement in the ability to process dynamic perceptual cues in the perception of vowel quality.


Sign in / Sign up

Export Citation Format

Share Document