litter mixtures
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 11)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Seyoum Getaneh Aydagnehum ◽  
Olivier Honnay ◽  
Ellen Desie ◽  
Kenny Helsen ◽  
Lisa Couck ◽  
...  

Abstract Background: Attempts to restore degraded highlands by tree planting are common in East Africa. However, up till now, little attention has been given to effects of tree species choice on litter decomposition and nutrient recycling. Method: In this study, three indigenous and two exotic tree species were selected for a litter decomposition study. The objective was to identify optimal tree species combinations and tree diversity levels for the restoration of degraded land via enhanced litter turnover. Litterbags were installed in June 2019 into potential restoration sites (disturbed natural forest and forest plantation) and compared to intact natural forest. The tested tree leaf litters included five monospecific litters, ten mixtures of three species and one mixture of five species. Standard green and rooibos tea were used for comparison. A total of 1033 litters were retrieved for weight loss analysis after one, three, six, and twelve months of incubation. Results: The finding indicates a significant effect of both litter quality and litter diversity on litter decomposition. The nitrogen-fixing native tree Millettia ferruginea showed a comparable decomposition rate as the fast decomposing green tea. The exotic conifer Cupressus lusitanica and the native recalcitrant Syzygium guineense have even a lower decomposition rate than the slowly decomposing rooibos tea. A significant correlation was observed between litter mass loss and initial leaf litter chemical composition. Moreover, we found positive non-additive effects for litter mixtures including nutrient-rich and negative non-additive effects for litter mixtures including poor leaf litters respectively. Conclusion: These findings suggest that both litter quality and litter diversity play an important role in decomposition processes and therefore in the restoration of degraded tropical moist evergreen forest.


2021 ◽  
Author(s):  
Patrick Ndayambaje ◽  
Lili Wei ◽  
Tingfeng Zhang ◽  
Lin Liu ◽  
Xu Huang ◽  
...  

Abstract Coastal wetlands are among the most carbon-rich ecosystems in the world. Litter decomposition is a major process controlling soil carbon input. Litter mixing has shown a non-additive effect on the litter decomposition of terrestrial plants particularly of those species having contrasting litter quality. But the non-additive effect has been rarely tested in coastal plants. We selected three common mangrove species and one saltmarsh species, co-occurring in subtropical coasts, to test whether the non-additive effect occurs when the litters of these coastal species mixing together. We are also concerned whether the changes in the decomposition rate of litter will affect the nutrient contents in waters. A litter-bag experiment was carried out in a glasshouse with single and mixed leaf litters. A non-additive effect was observed in the litter mixtures of mangrove species Aegiceras corniculatum vs. Kandelia obovata (antagonistic) and A. corniculatum vs. Avicennia marina (synergistic). Whereas, the mixture of A. corniculatum (mangrove species) and Spartina alterniflora (saltmarsh species) showed an additive effect. The strength of the non-additive effect was unrelated to the initial trait dissimilarity of litters. Instead, the decomposition rate and mass remaining of litter mixtures were strongly related to the carbon concentrations in litters. Nutrient content in waters was dependent on the decomposition rate of litter mixtures but not on the initial nutrient concentrations in litters. Despite the behind mechanisms were not yet revealed by the current study, these findings have improved our understanding of the litter decomposition of coastal species and the consequent nutrient release.


Author(s):  
Lili Wei

Coastal wetlands are among the most carbon-rich ecosystems in the world. Litter decomposition is a major process controlling soil carbon input. Litter mixing has shown a non-additive effect on the litter decomposition of terrestrial plants particularly of those species having contrasting litter quality. But the non-additive effect has been rarely tested in coastal plants which generally having low-quality litters. We selected three common mangrove species and one saltmarsh species, co-occurring in subtropical coasts, to test whether the non-additive effect occurs when the litters of these coastal species mixing together. We are also concerned whether the changes in the decomposition rate of litter will affect the nutrient contents in waters. A litter-bag experiment was carried out in a glasshouse with single and mixed leaf litters. A non-additive effect was observed in the litter mixtures of mangrove species Aegiceras corniculatum vs. Kandelia obovata (antagonistic) and A. corniculatum vs. Avicennia marina (synergistic). Whereas, the mixture of A. corniculatum (mangrove species) and Spartina alterniflora (saltmarsh species) showed an additive effect. The strength of the non-additive effect was unrelated to the initial trait dissimilarity of litters. Instead, the decomposition rate and mass remaining of litter mixtures were strongly related to the carbon concentrations in litters. Nutrient content in waters was dependent on the decomposition rate of litter mixtures but not on the initial nutrient concentrations in litters. Despite the behind mechanisms were not yet revealed by the current study, these findings have improved our understanding of the litter decomposition of coastal species and the consequent nutrient release.


Author(s):  
Lili Wei

Non-additive effect on litter decomposition often occurs in mixed terrestrial communities but little investigated on coastal ecosystems. We selected three common mangrove species and one alien saltmarsh species from a coastal wetland stand to test whether non-additive effect occurs when the litters of these coastal species mixed together. To avoid the heterogeneity of soil conditions and to detect nutrient release into water, we conducted an in vitro litter-bag experiment in a glasshouse. Among three litter mixtures, the non-additive effect was observed in the litter mixture composed of mangrove species Aegiceras corniculatum vs. Kandelia obovata (antagonistic) and A. corniculatum vs. Avicennia marina (synergistic), but not in the litter mixture of A. corniculatum vs. Spartina alterniflora (the alien saltmarsh species). The strength of non-additive effect was unrelated to litter initial trait dissimilarity. Instead, litter decomposition rate and mass remaining of litter mixtures were strongly related to the community-weighted mean of leaf carbon. The nutrients and carbon released into water were more likely controlled by litter decomposition rate rather than by litter initial nutrient concentrations. These findings would lead to the expectations on ecosystem scale that the mangrove stand mixed with A. corniculatum and K. obovata accumulates more organic carbon in the sediment and releases less nutrients into water column than the stand composed of A. corniculatum and A. marina . It is also implying that the alien species S. alterniflora invasion may not reduce soil carbon stock of mangrove forests. These hypotheses need to be further tested and which will be suggestive for the protection or reconstruction of coastal wetlands.


2021 ◽  
Vol 83 (3) ◽  
Author(s):  
Meritxell Abril ◽  
Margarita Menéndez ◽  
Verónica Ferreira

2020 ◽  
Vol 108 (6) ◽  
pp. 2283-2297 ◽  
Author(s):  
Shixing Zhou ◽  
Olaf Butenschoen ◽  
Sandra Barantal ◽  
Ira Tanya Handa ◽  
Marika Makkonen ◽  
...  

2020 ◽  
Vol 39 (8) ◽  
pp. 771-784 ◽  
Author(s):  
Qian Li ◽  
Guangyue Zhao ◽  
Guangmin Cao ◽  
Xiaoxi Zhang ◽  
Zengwen Liu

Geoderma ◽  
2019 ◽  
Vol 354 ◽  
pp. 113890 ◽  
Author(s):  
Xinhou Zhang ◽  
Xianwei Wang ◽  
Patrick M. Finnegan ◽  
Wenwen Tan ◽  
Rong Mao

Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 209 ◽  
Author(s):  
Deirdre Kerdraon ◽  
Julia Drewer ◽  
Biancolini Castro ◽  
Abby Wallwork ◽  
Jefferson Hall ◽  
...  

Tropical reforestation initiatives are widely recognized as a key strategy for mitigating rising atmospheric CO2 concentrations. Although rapid tree growth in young secondary forests and plantations sequesters large amounts of carbon (C) in biomass, the choice of tree species for reforestation projects is crucial, as species identity and diversity affect microbial activity and soil C cycling via plant litter inputs. The decay rate of litter is largely determined by its chemical and physical properties, and trait complementarity of diverse litter mixtures can produce non-additive effects, which facilitate or delay decomposition. Furthermore, microbial communities may preferentially decompose litter from native tree species (homefield advantage). Hence, information on how different tree species influence soil carbon dynamics could inform reforestation efforts to maximize soil C storage. We established a decomposition experiment in Panama, Central America, using mesocosms and litterbags in monoculture plantations of native species (Dalbergia retusa Hemsl. and Terminalia amazonia J.F.Gmel., Exell) or teak (Tectona grandis L.f.) to assess the influence of different litter types and litter mixtures on soil C dynamics. We used reciprocal litter transplant experiments to assess the homefield advantage and litter mixtures to determine facilitative or antagonistic effects on decomposition rates and soil respiration in all plantation types. Although litter properties explained some of the variation in decomposition, the microclimate and soil properties in the plantations also played an important role. Microbial biomass C and litter decomposition were lower in Tectona than in the native plantations. We observed non-additive effects of mixtures with Tectona and Dalbergia litter on both decomposition and soil respiration, but the effect depended on plantation type. Further, there was a homefield disadvantage for soil respiration in Tectona and Terminalia plantations. Our results suggest that tree species diversity plays an important role in the resilience of tropical soils and that plantations with native tree species could help maintain key processes involved in soil carbon sequestration.


Sign in / Sign up

Export Citation Format

Share Document