scholarly journals Decomposition of leaf litter mixtures across biomes: The role of litter identity, diversity and soil fauna

2020 ◽  
Vol 108 (6) ◽  
pp. 2283-2297 ◽  
Author(s):  
Shixing Zhou ◽  
Olaf Butenschoen ◽  
Sandra Barantal ◽  
Ira Tanya Handa ◽  
Marika Makkonen ◽  
...  
2014 ◽  
Vol 281 (1796) ◽  
pp. 20141682 ◽  
Author(s):  
Sandra Barantal ◽  
Heidy Schimann ◽  
Nathalie Fromin ◽  
Stephan Hättenschwiler

Plant leaf litter generally decomposes faster as a group of different species than when individual species decompose alone, but underlying mechanisms of these diversity effects remain poorly understood. Because resource C : N : P stoichiometry (i.e. the ratios of these key elements) exhibits strong control on consumers, we supposed that stoichiometric dissimilarity of litter mixtures (i.e. the divergence in C : N : P ratios among species) improves resource complementarity to decomposers leading to faster mixture decomposition. We tested this hypothesis with: (i) a wide range of leaf litter mixtures of neotropical tree species varying in C : N : P dissimilarity, and (ii) a nutrient addition experiment (C, N and P) to create stoichiometric similarity. Litter mixtures decomposed in the field using two different types of litterbags allowing or preventing access to soil fauna. Litter mixture mass loss was higher than expected from species decomposing singly, especially in presence of soil fauna. With fauna, synergistic litter mixture effects increased with increasing stoichiometric dissimilarity of litter mixtures and this positive relationship disappeared with fertilizer addition. Our results indicate that litter stoichiometric dissimilarity drives mixture effects via the nutritional requirements of soil fauna. Incorporating ecological stoichiometry in biodiversity research allows refinement of the underlying mechanisms of how changing biodiversity affects ecosystem functioning.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2562 ◽  
Author(s):  
Nereida Melguizo-Ruiz ◽  
Gerardo Jiménez-Navarro ◽  
Jordi Moya-Laraño

Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, ‘keystone structures’, which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals—springtails, mites and enchytraeids—during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered ‘keystone structures’ that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna activities through their decaying fruit husks, hence acting as ecosystem engineers.


2013 ◽  
Vol 21 (2) ◽  
pp. 206-213 ◽  
Author(s):  
Yuan Zhizhong ◽  
Cui Yang ◽  
Yan Shaokui

2013 ◽  
Vol 57 ◽  
pp. 341-348 ◽  
Author(s):  
S. Linnea Berglund ◽  
Göran I. Ågren ◽  
Alf Ekblad

2010 ◽  
Vol 24 (4) ◽  
pp. 937-946 ◽  
Author(s):  
Tatiana De Oliveira ◽  
Stephan Hättenschwiler ◽  
Ira Tanya Handa

2011 ◽  
Vol 80 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Roman Luštrik ◽  
Martin Turjak ◽  
Simona Kralj-Fišer ◽  
Cene Fišer

Interspecific interactions between surface and subterranean species may be a key determinant for species distributions. Until now, the existence of competition (including predation) between these groups has not been tested. To assess the coexistence and potential role of interspecific interactions between surface Gammarus fossarum and subterranean Niphargus timavi, and to determine their micro distributions, we conducted a series of field and laboratory observations. We aimed to determine: (1) species substrate preference, (2) whether the presence of G. fossarum influences the habitat choice of N. timavi, and (3) possible predation effects on micro habitat choice of small juveniles. Throughout a small river in SW Slovenia, N. timavi was predominantly found in leaf litter and gravel, but rarely in sand. In the sand however, we exclusively found juveniles. In contrast, surface G. fossarum sheltered mainly in leaf litter. A similar, body size dependent, micro distribution was observed in G. fossarum, where small individuals were generally found in gravel and sand. The presence of G. fossarum affected the micro distribution of juvenile, but not adult, N. timavi. In the laboratory we observed predation and cannibalism in both species. Niphargus timavi, however, appeared to be a more efficient predator than G. fossarum. In particular, juvenile N. timavi were most vulnerable to preying by adults of both species. This probably affected the distribution of juvenile N. timavi that chose finer substrates when placed with adult individuals in an aquarium with granules of different size. To understand the distribution of subterranean species, the summed effect of intraspecific interactions, as well as surface – subterranean species interactions, in particular between individuals of different size, should be taken into account.


2020 ◽  
Vol 20 (3) ◽  
pp. 990-1000 ◽  
Author(s):  
J. Tomás Schoffer ◽  
Sébastien Sauvé ◽  
Alexander Neaman ◽  
Rosanna Ginocchio
Keyword(s):  

1989 ◽  
Vol 98 (4) ◽  
pp. 275-284 ◽  
Author(s):  
Arun Lekha ◽  
G Chopra ◽  
S R Gupta
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document