degeneracy pressure
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 6)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Jian-Bin Bao ◽  
Nicholas P. Bao

There are unsolved problems related to inflation, gravity, dark matter, dark energy, missing antimatter, and the birth of the universe. Some of them can be better answered by assuming the existence of aether and hypoatoms. Both were created during the inflation in the very early universe. While aether forms vacuum, hypoatoms, composed of both matter and antimatter and believed to be neutrinos, form all observable matter. In vacuum, aether exists between the particle-antiparticle dark matter form and the dark energy form in a dynamic equilibrium: A + A-bar = gamma + gamma. The same reaction stabilizes hypoatoms and generates a 3-dimensional sink flow of aether that causes gravity. Based on the hypoatom structure, the singularity does not exist inside a black hole; the core of the black hole is a hypoatom star or neutrino star. By gaining enough mass, ca. 3 X 1022 Msun, to exceed neutrino degeneracy pressure, the black hole collapses or annihilates into the singularity, thus turning itself into a white hole or a Big Bang. The universe is anisotropic and nonhomogeneous. Its center, or where the Big Bang happened, is at about 0.671 times the radius of the observable universe at the Galactic coordinates (l, b) ~ (286°, -42°). If we look from the Earth to the center of the universe, the universe is rotating clockwise.


2021 ◽  
Vol 87 (4) ◽  
Author(s):  
Jun Zhu ◽  
Xiaoshan Liu ◽  
Yuee Luo

The propagation of extraordinary and upper-hybrid waves in spin quantum magnetoplasmas with vacuum polarization effect is investigated. Based on the quantum magnetohydrodynamics model including Bohm potential, arbitrary relativistic degeneracy pressure and spin force, and Maxwell's equations modified by the spin current and vacuum polarization current, the dispersion relations of extraordinary and upper-hybrid waves are derived. The analytical and numerical results show that quantum effects (Bohm potential, degeneracy pressure and spin magnetization energy) and the vacuum polarization effect modify the propagation of the extraordinary wave. Under the action of a strong magnetic field, the plasma frequency is obviously increased by the vacuum polarization effect.


Author(s):  
Jian-Bin Bao ◽  
Nicholas Bao

There are unsolved problems related to inflation, gravity, dark matter, dark energy, and the fate of the universe. Some of them can be better answered by assuming the existence of aether and hypoatoms. Both were created during the inflation in the very early universe. While aether forms vacuum, hypoatoms form all observable matter. In vacuum, aether exists between the particle-antiparticle form and the energy form in a dynamic equilibrium: A + A-bar = gamma + gamma, resulting in quantum phenomena and a character of negative pressure. The proposed hypoatom has an antimatter nucleus, with an equal mass of matter particles of aether in its perimeter, so the enigma of missing antimatter does not exist. At hypoatoms, the forward reaction of the aether annihilation dominates. With constant-density dark energy, the annihilation constantly consumes the aether in vacuum, producing a sink flow of aether that warps spacetime, and thus generates gravity and a dark matter halo in the vicinity of massive objects. The hypoatom is believed to be a neutrino n1, with a mass of 5 meV. Based on the hypoatom structure, singularities do not exist inside black holes; their cores are hypoatom stars or neutrino stars. By gaining enough mass, ca. , to exceed neutrino degeneracy pressure, a black hole collapses or annihilates into the singularity, thus turning itself into a white hole or a new Big Bang.


2020 ◽  
Vol 498 (2) ◽  
pp. 3000-3012 ◽  
Author(s):  
F Castillo ◽  
A Reisenegger ◽  
J A Valdivia

ABSTRACT In a previous paper, we reported simulations of the evolution of the magnetic field in neutron star (NS) cores through ambipolar diffusion, taking the neutrons as a motionless uniform background. However, in real NSs, neutrons are free to move, and a strong composition gradient leads to stable stratification (stability against convective motions) both of which might impact on the time-scales of evolution. Here, we address these issues by providing the first long-term two-fluid simulations of the evolution of an axially symmetric magnetic field in a neutron star core composed of neutrons, protons, and electrons with density and composition gradients. Again, we find that the magnetic field evolves towards barotropic ‘Grad–Shafranov equillibria’, in which the magnetic force is balanced by the degeneracy pressure gradient and gravitational force of the charged particles. However, the evolution is found to be faster than in the case of motionless neutrons, as the movement of charged particles (which are coupled to the magnetic field, but are also limited by the collisional drag forces exerted by neutrons) is less constrained, since neutrons are now allowed to move. The possible impact of non-axisymmetric instabilities on these equilibria, as well as beta decays, proton superconductivity, and neutron superfluidity, are left for future work.


2019 ◽  
Vol 28 (14) ◽  
pp. 1943003 ◽  
Author(s):  
C. R. Argüelles ◽  
A. Krut ◽  
J. A. Rueda ◽  
R. Ruffini

We analyze the intriguing possibility of explaining both dark mass components in a galaxy: the dark matter (DM) halo and the supermassive dark compact object lying at the center, by a unified approach in terms of a quasi-relaxed system of massive, neutral fermions in general relativity. The solutions to the mass distribution of such a model that fulfill realistic halo boundary conditions inferred from observations, develop a high-density core supported by the fermion degeneracy pressure able to mimic massive black holes at the center of galaxies. Remarkably, these dense core-diluted halo configurations can explain the dynamics of the closest stars around Milky Way’s center (SgrA*) all the way to the halo rotation curve, without spoiling the baryonic bulge-disk components, for a narrow particle mass range [Formula: see text]–[Formula: see text][Formula: see text]keV.


Quantum 20/20 ◽  
2019 ◽  
pp. 37-54
Author(s):  
Ian R. Kenyon

Indistinguishability of like particles, and the fermion and boson exchange symmetries discussed.Pauli exclusion principle and features of multi-electron atoms, including selection rules are discussed. Degeneracy pressure and the formation of compact stellar objects is analysed. Quantum exchange force between electrons and its contribution to ferromagnetism is outlined. Fermi-Dirac and Bose-Einstein statistics, includng the chemical potential are derived. The conditions for Bose-Einstein condensation are deduced; condensates and their stability are considered.


2018 ◽  
Vol 73 (2) ◽  
pp. 135-141 ◽  
Author(s):  
M. Siddique ◽  
M. Jamil ◽  
A. Rasheed ◽  
F. Areeb ◽  
Asif Javed ◽  
...  

AbstractWe studied the influence of the classical relativistic beam of electrons on the hole acoustic wave (HAW) instability exciting in the semiconductor quantum plasmas. We conducted this study by using the quantum-hydrodynamic model of dense plasmas, incorporating the quantum effects of semiconductor plasma species which include degeneracy pressure, exchange-correlation potential and Bohm potential. Analysis of the quantum characteristics of semiconductor plasma species along with relativistic effect of beam electrons on the dispersion relation of the HAW is given in detail qualitatively and quantitatively by plotting them numerically. It is worth mentioning that the relativistic electron beam (REB) stabilises the HAWs exciting in semiconductor (GaAs) degenerate plasma.


2015 ◽  
Vol 81 (6) ◽  
Author(s):  
M. Irfan ◽  
S. Ali ◽  
Arshad M. Mirza ◽  
Yunliang Wang

The formation and propagation characteristics of small-amplitude magnetoacoustic dark/grey solitons are investigated in a semi relativistic degenerate magnetoplasma whose constituents are electrons and singly ionized positive ions. For this purpose, the electrons are assumed to follow the degeneracy pressure law through the Chandrasekhar equation of state, while the inertial cold ions are taken as non-degenerate and magnetized. By solving the one-fluid quantum magnetohydrodynamic (QMHD) model with the aid of a reductive perturbation technique, a nonlinear Schrödinger (NLS) equation is derived for weakly nonlinear envelope magnetoacoustic solitons. The NLS equation admits the existence of stable excitations, e.g. dark and grey solitons for which the condition $P/Q<0$ holds. Numerical results reveal that the variation of plasma number density, magnetic field strength, relativistic parameter $({\it\eta}_{e0})$ and the quantum parameter $(H)$ significantly modify the profiles of the envelope magnetoacoustic solitons. The present results are important to understanding of the nonlinear dynamics of magnetoacoustic solitons in astrophysical dense magnetoplasmas (viz., white dwarfs, magnetars, neutron stars, etc.), where the relativistic degeneracy effects play a vital role in collective interactions.


Sign in / Sign up

Export Citation Format

Share Document