chaotic transients
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 6)

H-INDEX

21
(FIVE YEARS 1)

Author(s):  
Marcel Aron ◽  
Thomas Lilienkamp ◽  
Stefan Luther ◽  
Ulrich Parlitz

Author(s):  
Dalton Nunes Oliveira ◽  
Erico Luiz Rempel ◽  
Roman Chertovskih ◽  
Bidya Karak

2020 ◽  
Vol 30 (12) ◽  
pp. 2030034
Author(s):  
Francis F. Franco ◽  
Erico L. Rempel

The nonlinear dynamics of a recently derived generalized Lorenz model [ Macek & Strumik, 2010 ] of magnetoconvection is studied. A bifurcation diagram is constructed as a function of the Rayleigh number where attractors and nonattracting chaotic sets coexist inside a periodic window. The nonattracting chaotic sets, also called chaotic saddles, are responsible for fractal basin boundaries with a fractal dimension near the dimension of the phase space, which causes the presence of very long chaotic transients. It is shown that the chaotic saddles can be used to infer properties of chaotic attractors outside the periodic window, such as their maximum Lyapunov exponent.


2019 ◽  
Vol 867 ◽  
pp. 414-437 ◽  
Author(s):  
Anton Pershin ◽  
Cédric Beaume ◽  
Steven M. Tobias

Unsteady spatially localized states such as puffs, slugs or spots play an important role in transition to turbulence. In plane Couette flow, steady versions of these states are found on two intertwined solution branches describing homoclinic snaking (Schneider et al., Phys. Rev. Lett., vol. 104, 2010, 104501). These branches can be used to generate a number of spatially localized initial conditions whose transition can be investigated. From the low Reynolds numbers where homoclinic snaking is first observed ($Re<175$) to transitional ones ($Re\approx 325$), these spatially localized states traverse various regimes where their relaminarization time and dynamics are affected by the dynamical structure of phase space. These regimes are reported and characterized in this paper for a $4\unicode[STIX]{x03C0}$-periodic domain in the streamwise direction as a function of the two remaining variables: the Reynolds number and the width of the localized pattern. Close to the snaking, localized states are attracted by spatially localized periodic orbits before relaminarizing. At larger values of the Reynolds number, the flow enters a chaotic transient of variable duration before relaminarizing. Very long chaotic transients ($t>10^{4}$) can be observed without difficulty for relatively low values of the Reynolds number ($Re\approx 250$).


2018 ◽  
Vol 16 (3) ◽  
pp. 160-165
Author(s):  
Aleksey Kudreyko ◽  
Nail G. Migranov

2018 ◽  
Vol 120 (9) ◽  
Author(s):  
Thomas Lilienkamp ◽  
Ulrich Parlitz

Author(s):  
Chandan Bose ◽  
Vikas Reddy ◽  
Sayan Gupta ◽  
Sunetra Sarkar

This paper deals with the nonlinear fluid structure interaction (FSI) dynamics of a Dipteran flight motor inspired flapping system in an inviscid fluid. In the present study, the FSI effects are incorporated to an existing forced Duffing oscillator model to gain a clear understanding of the nonlinear dynamical behavior of the system in the presence of aerodynamic loads. The present FSI framework employs a potential flow solver to determine the aerodynamic loads and an explicit fourth-order Runge–Kutta scheme to solve the structural governing equations. A bifurcation analysis has been carried out considering the amplitude of the wing actuation force as the control parameter to investigate different complex states of the system. Interesting dynamical behavior including period doubling, chaotic transients, periodic windows, and finally an intermittent transition to stable chaotic attractor have been observed in the response with an increase in the bifurcation parameter. Similar dynamics is also reflected in the aerodynamic loads as well as in the trailing edge wake patterns.


Sign in / Sign up

Export Citation Format

Share Document