depth enhancement
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Kuan-Ting Lee ◽  
En-Rwei Liu ◽  
Jar-Ferr Yang ◽  
Li Hong

Abstract With the rapid development of 3D coding and display technologies, numerous applications are emerging to target human immersive entertainments. To achieve a prime 3D visual experience, high accuracy depth maps play a crucial role. However, depth maps retrieved from most devices still suffer inaccuracies at object boundaries. Therefore, a depth enhancement system is usually needed to correct the error. Recent developments by applying deep learning to deep enhancement have shown their promising improvement. In this paper, we propose a deep depth enhancement network system that effectively corrects the inaccurate depth using color images as a guide. The proposed network contains both depth and image branches, where we combine a new set of features from the image branch with those from the depth branch. Experimental results show that the proposed system achieves a better depth correction performance than state of the art advanced networks. The ablation study reveals that the proposed loss functions in use of image information can enhance depth map accuracy effectively.


Author(s):  
Tarik Lassouaoui ◽  
Florin Hutu ◽  
Guillaume Villemaud ◽  
Yvan Duroc

Displays ◽  
2021 ◽  
pp. 102040
Author(s):  
Jing Zhang ◽  
Qianqian Dou ◽  
Jing Liu ◽  
Yuting Su ◽  
Wanning Sun
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 416
Author(s):  
Changmeng Peng ◽  
Luting Cai ◽  
Xiaoyang Huang ◽  
Zhizhong Fu ◽  
Jin Xu ◽  
...  

It is a challenge to transmit and store the massive visual data generated in the Visual Internet of Things (VIoT), so the compression of the visual data is of great significance to VIoT. Compressing bit-depth of images is very cost-effective to reduce the large volume of visual data. However, compressing the bit-depth will introduce false contour, and color distortion would occur in the reconstructed image. False contour and color distortion suppression become critical issues of the bit-depth enhancement in VIoT. To solve these problems, a Bit-depth Enhancement method with AUTO-encoder-like structure (BE-AUTO) is proposed in this paper. Based on the convolution-combined-with-deconvolution codec and global skip of BE-AUTO, this method can effectively suppress false contour and color distortion, thus achieving the state-of-the-art objective metric and visual quality in the reconstructed images, making it more suitable for bit-depth enhancement in VIoT.


Author(s):  
C. S. Anderson ◽  
G. H. Heald ◽  
J. A. Eilek ◽  
E. Lenc ◽  
B. M. Gaensler ◽  
...  

Abstract We present the first Faraday rotation measure (RM) grid study of an individual low-mass cluster—the Fornax cluster—which is presently undergoing a series of mergers. Exploiting commissioning data for the POlarisation Sky Survey of the Universe’s Magnetism (POSSUM) covering a ${\sim}34$ square degree sky area using the Australian Square Kilometre Array Pathfinder (ASKAP), we achieve an RM grid density of ${\sim}25$ RMs per square degree from a 280-MHz band centred at 887 MHz, which is similar to expectations for forthcoming GHz-frequency ${\sim}3\pi$ -steradian sky surveys. These data allow us to probe the extended magnetoionic structure of the cluster and its surroundings in unprecedented detail. We find that the scatter in the Faraday RM of confirmed background sources is increased by $16.8\pm2.4$ rad m−2 within 1 $^\circ$ (360 kpc) projected distance to the cluster centre, which is 2–4 times larger than the spatial extent of the presently detectable X-ray-emitting intracluster medium (ICM). The mass of the Faraday-active plasma is larger than that of the X-ray-emitting ICM and exists in a density regime that broadly matches expectations for moderately dense components of the Warm-Hot Intergalactic Medium. We argue that forthcoming RM grids from both targeted and survey observations may be a singular probe of cosmic plasma in this regime. The morphology of the global Faraday depth enhancement is not uniform and isotropic but rather exhibits the classic morphology of an astrophysical bow shock on the southwest side of the main Fornax cluster, and an extended, swept-back wake on the northeastern side. Our favoured explanation for these phenomena is an ongoing merger between the main cluster and a subcluster to the southwest. The shock’s Mach angle and stand-off distance lead to a self-consistent transonic merger speed with Mach 1.06. The region hosting the Faraday depth enhancement also appears to show a decrement in both total and polarised radio emission compared to the broader field. We evaluate cosmic variance and free-free absorption by a pervasive cold dense gas surrounding NGC 1399 as possible causes but find both explanations unsatisfactory, warranting further observations. Generally, our study illustrates the scientific returns that can be expected from all-sky grids of discrete sources generated by forthcoming all-sky radio surveys.


2021 ◽  
pp. 1-1
Author(s):  
Changmeng Peng ◽  
Maohan Xia ◽  
Zhizhong Fu ◽  
Jin Xu ◽  
Xiaofeng Li
Keyword(s):  

Author(s):  
Jing Liu ◽  
Xin Wen ◽  
Weizhi Nie ◽  
Yuting Su ◽  
Peiguang Jing ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document