bird schistosome
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
pp. 360-365
Author(s):  
Azmi Al-Jubury ◽  
Anette Bygum ◽  
Eva SusannaTracz ◽  
Charlotte Näslund Koch ◽  
Kurt Buchmann

During recent years, we have observed an increasing occurrence of cercarial dermatitis in Denmark. We here describe 5 new cases from 2019 to 2020 associated with bathing in lakes Esrum sø, Furesø, and Ringen with emphasis on clinical symptoms and their relation to previous exposure to bird schistosome cercariae. In 2020, 2 patients from Furesø suffered from different severity of clinical symptoms after morning bathing in the same lake. We suggest that the differential symptoms may be explained by primary versus secondary exposure to the immunogenic pathogen.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 740
Author(s):  
Anna Stanicka ◽  
Łukasz Migdalski ◽  
Katarzyna Szopieray ◽  
Anna Cichy ◽  
Łukasz Jermacz ◽  
...  

Research on alien and invasive species focuses on the direct effects of invasion on native ecosystems, and the possible positive effects of their presence are most often overlooked. Our aim was to check the suitability of selected alien species (the snail Physa acuta, the bivalve Dreissena polymorpha, and the gammarid Dikerogammarus villosus) as diluents for infectious bird schistosome cercariae—the etiological factor of swimmer’s itch. It has been hypothesized that alien species with different feeding habits (scrapers, filterers and predators) that cohabit the aquatic environment with intermediate hosts of the schistosomatid trematodes are capable of feeding on their free-swimming stages—cercariae. In the laboratory conditions used, all experimental animals diluted the cercariae of bird schistosome. The most effective diluents were P. acuta and D. villosus. However, a wide discrepancy in the dilution of the cercariae between replicates was found for gammarids. The obtained results confirm the hypothesis that increased biodiversity, even when alien species are involved, creates the dilution effect of the free-living stages of parasites. Determining the best diluent for bird schistosome cercariae could greatly assist in the development of current bathing areas protection measures against swimmer’s itch.


Author(s):  
Anna Stanicka ◽  
Łukasz Migdalski ◽  
Kamila Stefania Zając ◽  
Anna Cichy ◽  
Dorota Lachowska-Cierlik ◽  
...  

Bird schistosomes are commonly established as the causative agent of swimmer's itch − a hyper-sensitive skin reaction to the penetration of their infective larvae. The aim of the present study was to investigate the prevalence of the genus Bilharziella in comparison to other bird schistosome species from Lake Drawsko − one of the largest recreational lakes in Poland, struggling with the huge problem of swimmer's itch. In total, 317 specimens of pulmonate snails were collected and examined. The overall digenean infection was 35.33%. The highest bird schistosome prevalence was observed for Bilharziella sp. (4.63%) in Planorbarius corneus, followed by Trichobilharzia szidati (3.23%) in Lymnaea stagnalis and Trichobilharzia sp. (1.3%) in Stagnicola palustris. The location of Bilharziella sp. on the presented phylogeny showed that it is with high probability a different species than known so far B. polonica. Our finding complements the confirmed occurrence of bird schistosomes in European water bodies. Overall, presented research reveals the special importance of P. corneus as a source of the bird schistosome cercariae. This study suggests that the health threat connected with the blood flukes need to be further investigated by constant monitoring of their occurrence in intermediate hosts.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9487
Author(s):  
Anna Marszewska ◽  
Anna Cichy ◽  
Jana Bulantová ◽  
Petr Horák ◽  
Elżbieta Żbikowska

No effective method has yet been developed to prevent the threat posed by the emerging disease—cercarial dermatitis (swimmer’s itch), caused by infective cercariae of bird schistosomes (Digenea: Schistosomatidae). In our previous studies, the New Zealand mud snail—Potamopyrgus antipodarum (Gray, 1853; Gastropoda, Tateidae)—was used as a barrier between the miracidia of Trichobilharzia regenti and the target snails Radix balthica. Since the presence of non-indigenous snails reduced the parasite prevalence under laboratory conditions, we posed three new research questions: (1) Do bird schistosomes show totally perfect efficacy for chemotactic swimming behavior? (2) Do the larvae respond to substances emitted by incompatible snail species? (3) Do the excretory-secretory products of incompatible snail species interfere with the search for a compatible snail host? The experiments were carried out in choice-chambers for the miracidia of T. regenti and T. szidati. The arms of the chambers, depending on the variant, were filled with water conditioned by P. antipodarum, water conditioned by lymnaeid hosts, and dechlorinated tap water. Miracidia of both bird schistosome species chose more frequently the water conditioned by snails—including the water conditioned by the incompatible lymnaeid host and the alien species, P. antipodarum. However, species-specific differences were noticed in the behavior of miracidia. T. regenti remained more often inside the base arm rather than in the arm filled with water conditioned by P. antipodarum or the control arm. T. szidati, however, usually left the base arm and moved to the arm filled with water conditioned by P. antipodarum. In conclusion, the non-host snail excretory-secretory products may interfere with the snail host-finding behavior of bird schistosome miracidia and therefore they may reduce the risk of swimmer’s itch.


Sign in / Sign up

Export Citation Format

Share Document