mutation avoidance
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 1)

H-INDEX

19
(FIVE YEARS 0)

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3346
Author(s):  
Sui Par ◽  
Sofia Vaides ◽  
Pamela S. VanderVere-Carozza ◽  
Katherine S. Pawelczak ◽  
Jason Stewart ◽  
...  

Genome stability and maintenance pathways along with their requisite proteins are critical for the accurate duplication of genetic material, mutation avoidance, and suppression of human diseases including cancer. Many of these proteins participate in these pathways by binding directly to DNA, and a subset employ oligonucleotide/oligosaccharide binding folds (OB-fold) to facilitate the protein–DNA interactions. OB-fold motifs allow for sequence independent binding to single-stranded DNA (ssDNA) and can serve to position specific proteins at specific DNA structures and then, via protein–protein interaction motifs, assemble the machinery to catalyze the replication, repair, or recombination of DNA. This review provides an overview of the OB-fold structural organization of some of the most relevant OB-fold containing proteins for oncology and drug discovery. We discuss their individual roles in DNA metabolism, progress toward drugging these motifs and their utility as potential cancer therapeutics. While protein–DNA interactions were initially thought to be undruggable, recent reports of success with molecules targeting OB-fold containing proteins suggest otherwise. The potential for the development of agents targeting OB-folds is in its infancy, but if successful, would expand the opportunities to impinge on genome stability and maintenance pathways for more effective cancer treatment.



2020 ◽  
Vol 34 (23-24) ◽  
pp. 1637-1649
Author(s):  
Jordana C. Bloom ◽  
John C. Schimenti


Genetics ◽  
2020 ◽  
Vol 215 (2) ◽  
pp. 373-378 ◽  
Author(s):  
Vera D. Rinaldi ◽  
Jordana C. Bloom ◽  
John C. Schimenti

Eukaryotic organisms have evolved mechanisms to prevent the accumulation of cells bearing genetic aberrations. This is especially crucial for the germline, because fecundity and fitness of progeny would be adversely affected by an excessively high mutational incidence. The process of meiosis poses unique problems for mutation avoidance because of the requirement for SPO11-induced programmed double-strand breaks (DSBs) in recombination-driven pairing and segregation of homologous chromosomes. Mouse meiocytes bearing unrepaired meiotic DSBs or unsynapsed chromosomes are eliminated before completing meiotic prophase I. In previous work, we showed that checkpoint kinase 2 (CHK2; CHEK2), a canonical DNA damage response protein, is crucial for eliminating not only oocytes defective in meiotic DSB repair (e.g., Trip13Gt mutants), but also Spo11−/− oocytes that are defective in homologous chromosome synapsis and accumulate a threshold level of spontaneous DSBs. However, rescue of such oocytes by Chk2 deficiency was incomplete, raising the possibility that a parallel checkpoint pathway(s) exists. Here, we show that mouse oocytes lacking both p53 (TRP53) and the oocyte-exclusive isoform of p63, TAp63, protects nearly all Spo11−/− and Trip13Gt/Gt oocytes from elimination. We present evidence that checkpoint kinase I (CHK1; CHEK1), which is known to signal to TRP53, also becomes activated by persistent DSBs in oocytes, and to an increased degree when CHK2 is absent. The combined data indicate that nearly all oocytes reaching a threshold level of unrepaired DSBs are eliminated by a semiredundant pathway of CHK1/CHK2 signaling to TRP53/TAp63.



2020 ◽  
Vol 117 (11) ◽  
pp. 6035-6041 ◽  
Author(s):  
Chelsea R. Bulock ◽  
Xuanxuan Xing ◽  
Polina V. Shcherbakova

During eukaryotic replication, DNA polymerases ε (Polε) and δ (Polδ) synthesize the leading and lagging strands, respectively. In a long-known contradiction to this model, defects in the fidelity of Polε have a much weaker impact on mutagenesis than analogous Polδ defects. It has been previously proposed that Polδ contributes more to mutation avoidance because it proofreads mismatches created by Polε in addition to its own errors. However, direct evidence for this model was missing. We show that, in yeast, the mutation rate increases synergistically when a Polε nucleotide selectivity defect is combined with a Polδ proofreading defect, demonstrating extrinsic proofreading of Polε errors by Polδ. In contrast, combining Polδ nucleotide selectivity and Polε proofreading defects produces no synergy, indicating that Polε cannot correct errors made by Polδ. We further show that Polδ can remove errors made by exonuclease-deficient Polε in vitro. These findings illustrate the complexity of the one-strand–one-polymerase model where synthesis appears to be largely divided, but Polδ proofreading operates on both strands.



2019 ◽  
Author(s):  
Vera D. Rinaldi ◽  
Jordana C. Bloom ◽  
John C. Schimenti

ABSTRACTEukaryotic organisms have evolved mechanisms to prevent the accumulation of cells bearing genetic aberrations. This is especially crucial for the germline, because fecundity, and fitness of progeny would be adversely affected by an excessively high mutational incidence. The process of meiosis poses unique problems for mutation avoidance, due to the requirement for SPO11-induced programmed double strand breaks (DSBs) in recombination-driven pairing and segregation of homologous chromosomes. Mouse meiocytes bearing unrepaired meiotic DSBs or unsynapsed chromosomes are eliminated before completing meiotic prophase I. In previous work, we showed that checkpoint kinase 2 (CHK2; CHEK2), a canonical DNA damage response protein, is crucial for eliminating not only oocytes defective in meiotic DSB repair (e.g. Trip13Gt mutants), but also asynaptic Spo11−/− oocytes that accumulate a threshold level of spontaneous DSBs. However, rescue of such oocytes by Chk2 deficiency was incomplete, raising the possibility that a parallel checkpoint pathway(s) exists. Here, we show that mouse oocytes lacking both TAp63 and TRP53 protects nearly all Spo11−/− and Trip13Gt/Gt oocytes from elimination. We present evidence that checkpoint kinase I (CHK1; CHEK1), which is known to signal to TRP53, also becomes activated by persistent DSBs in oocytes, and to an increased degree when CHK2 is absent. The combined data indicate that nearly all oocytes reaching a threshold level of unrepaired DSBs are eliminated by a semi-redundant pathway of CHK1/CHK2 signaling to TRP53/TAp63.



Author(s):  
Farzanah Hassim ◽  
Andrea O. Papadopoulos ◽  
Bavesh D. Kana ◽  
Bhavna G. Gordhan


2013 ◽  
Vol 288 (16) ◽  
pp. 11252-11262 ◽  
Author(s):  
Aravind Goud G. Patil ◽  
Pau Biak Sang ◽  
Ashwin Govindan ◽  
Umesh Varshney
Keyword(s):  


2008 ◽  
Vol 29 (3) ◽  
pp. 907-918 ◽  
Author(s):  
Claudine Dherin ◽  
Emeric Gueneau ◽  
Mathilde Francin ◽  
Marcela Nunez ◽  
Simona Miron ◽  
...  

ABSTRACT Mlh1 is an essential factor of mismatch repair (MMR) and meiotic recombination. It interacts through its C-terminal region with MutL homologs and proteins involved in DNA repair and replication. In this study, we identified the site of yeast Mlh1 critical for the interaction with Exo1, Ntg2, and Sgs1 proteins, designated as site S2 by reference to the Mlh1/Pms1 heterodimerization site S1. We show that site S2 is also involved in the interaction between human MLH1 and EXO1 or BLM. Binding at this site involves a common motif on Mlh1 partners that we called the MIP-box for the Mlh1 interacting protein box. Direct and specific interactions between yeast Mlh1 and peptides derived from Exo1, Ntg2, and Sgs1 and between human MLH1 and peptide derived from EXO1 and BLM were measured with K d values ranging from 8.1 to 17.4 μM. In Saccharomyces cerevisiae, a mutant of Mlh1 targeted at site S2 (Mlh1-E682A) behaves as a hypomorphic form of Exo1. The site S2 in Mlh1 mediates Exo1 recruitment in order to optimize MMR-dependent mutation avoidance. Given the conservation of Mlh1 and Exo1 interaction, it may readily impact Mlh1-dependent functions such as cancer prevention in higher eukaryotes.



2008 ◽  
Vol 41 (5) ◽  
pp. 1101-1111 ◽  
Author(s):  
Sanath K. Mokkapati ◽  
A. R. Fernández de Henestrosa ◽  
Ashok S. Bhagwat


Sign in / Sign up

Export Citation Format

Share Document