semisimple class
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2018 ◽  
Vol 98 (2) ◽  
pp. 239-250 ◽  
Author(s):  
R. G. MCDOUGALL ◽  
L. K. THORNTON

In this paper, class operators are used to give a complete listing of distinct base radical and semisimple classes for universal classes of finite associative rings. General relations between operators reveal that the maximum order of the semigroup formed is 46. In this setting, the homomorphically closed semisimple classes are precisely the hereditary radical classes and hence radical–semisimple classes, and the largest homomorphically closed subclass of a semisimple class is a radical–semisimple class.


2009 ◽  
Vol 80 (3) ◽  
pp. 423-429 ◽  
Author(s):  
HALINA FRANCE-JACKSON

AbstractA radical α has the Amitsur property if α(A[x])=(α(A[x])∩A)[x] for all rings A. For rings R⊆S with the same unity, we call S a finite centralizing extension of R if there exist b1,b2,…,bt∈S such that S=b1R+b2R+⋯+btR and bir=rbi for all r∈R and i=1,2,…,t. A radical α is FCE-friendly if α(S)∩R⊆α(R) for any finite centralizing extension S of a ring R. We show that if α is a supernilpotent radical whose semisimple class contains the ring ℤ of all integers and α is FCE-friendly, then α has the Amitsur property. In this way the Amitsur property of many well-known radicals such as the prime radical, the Jacobson radical, the Brown–McCoy radical, the antisimple radical and the Behrens radical can be established. Moreover, applying this condition, we will show that the upper radical 𝒰(*k) generated by the essential cover *k of the class * of all *-rings has the Amitsur property and 𝒰(*k)(A[x])=𝒰(*k)(A)[x], where a semiprime ring R is called a *-ring if the factor ring R/I is prime radical for every nonzero ideal I of R. The importance of *-rings stems from the fact that a *-ring A is Jacobson semisimple if and only if A is a primitive ring.


2008 ◽  
Vol 78 (1) ◽  
pp. 107-110
Author(s):  
HALINA FRANCE-JACKSON

AbstractLet ρ be a supernilpotent radical. Let ρ* be the class of all rings A such that either A is a simple ring in ρ or the factor ring A/I is in ρ for every nonzero ideal I of A and every minimal ideal M of A is in ρ. Let $\mathcal {L}\left ( \rho ^{\ast }\right ) $ be the lower radical determined by ρ* and let ρφ denote the upper radical determined by the class of all subdirectly irreducible rings with ρ-semisimple hearts. Le Roux and Heyman proved that $\mathcal {L}\left ( \rho ^{\ast }\right ) $ is a supernilpotent radical with $\rho \subseteq \mathcal {L}\left ( \rho ^{\ast }\right ) \subseteq \rho _{\varphi }$ and they asked whether $\mathcal {L} \left ( \rho ^{\ast }\right ) =\rho _{\varphi }$ if ρ is replaced by β, ℒ , 𝒩 or 𝒥 , where β, ℒ , 𝒩 and 𝒥 denote the Baer, the Levitzki, the Koethe and the Jacobson radical, respectively. In the present paper we will give a negative answer to this question by showing that if ρ is a supernilpotent radical whose semisimple class contains a nonzero nonsimple * -ring without minimal ideals, then $\mathcal {L}\left ( \rho ^{\ast }\right ) $ is a nonspecial radical and consequently $\mathcal {L}\left ( \rho ^{\ast }\right ) \neq \rho _{\varphi }$. We recall that a prime ring A is a * -ring if A/I is in β for every $0\neq I\vartriangleleft A$.


2007 ◽  
Vol 76 (2) ◽  
pp. 263-268 ◽  
Author(s):  
Halina France-Jackson

For a supernilpotent radical α and a special class σ of rings we call a ring R (α, σ)-essential if R is α-semisimple and for each ideal P of R with R/P ε σ, P ∩ I ≠ 0 whenever I is a nonzero two-sided ideal of R. (α, σ)-essential rings form a generalisation of prime essential rings introduced by L. H. Rowen in his study of semiprime rings and their subdirect decompositions and they have been a subject of investigations of many prominent authors since. We show that many important results concerning prime essential rings are also valid for (α, σ)-essential rings and demonstrate how (α, σ)-essential rings can be used to determine whether a supernilpotent radical is special. We construct infinitely many supernilpotent nonspecial radicals whose semisimple class of prime rings is zero and show that such radicals form a sublattice of the lattice of all supernilpotent radicals. This generalises Yu.M. Ryabukhin's example.


2005 ◽  
Vol 12 (01) ◽  
pp. 101-112
Author(s):  
L. Godloza ◽  
N. J. Groenewald ◽  
W. A. Olivier

For near-ring ideal mappings ρ1 and ρ2, we investigate radical theoretical properties of and the relationship among the class pairs (ρ1: ρ2), [Formula: see text] and (ℛρ2: ℛρ1). Conditions on ρ1 and ρ2 are given for a general class pair to form a radical class of various types. These types include the Plotkin and KA-radical varieties. A number of examples are shown to motivate the suitability of the theory of Hoehnke-radicals over KA-radicals when radical pairs of near-rings are studied. In particular, it is shown that [Formula: see text] forms a KA-radical class, where [Formula: see text] denotes the class of completely prime near-rings and [Formula: see text] the class of 3-prime near-rings. This gives another near-ring generalization of the 2-primal ring concept. The theory of radical pairs are also used to show that in general the class of 3-semiprime near-rings is not the semisimple class of the 3-prime radical.


2000 ◽  
Vol 28 (9) ◽  
pp. 4269-4283 ◽  
Author(s):  
Robert McDougall
Keyword(s):  

1993 ◽  
Vol 47 (2) ◽  
pp. 287-290 ◽  
Author(s):  
Halina France-Jackson

A ring A is prime essential if A is semiprime and every prime ideal of A has a nonzero intersection with each nonzero ideal of A. We prove that any radical (other than the Baer's lower radical) whose semisimple class contains all prime essential rings is not special. This yields non-speciality of certain known radicals and answers some open questions.


Author(s):  
R. Mlitz ◽  
S. Veldsman

AbstractStarting with a class ℳ of Ω-groups, necessary and sufficient conditions on ℳ are given to ensure that the corresponding Hoehnke radical ρ (determined by the subdirect closure of ℳ as semisimple class) is a radical in the sense of Kurosh and Amitsur; has a hereditary semisimple class; satisfies the ADS-property; has a hereditary radical class or satisfies ρN ∩ I ⊆ ρI and lastly, have both a hereditary radical and semisimple class or satisfies ρN ∩ I = ρI.


Author(s):  
Ju. M. Rjabuhin ◽  
R. Wiegandt

AbstractIt is proved that a regular essentially closed and weakly homomorphically closed proper subclass of rings consists of semiprime rings. A regular class M defines a supernilpotent upper radical if and only if M consists of semiprime rings and the essential cover Mk of M is contained in the semisimple class S U M. A regular essentially closed class M containing all semisimple prime rings, defines a special upper radical if and only if M satisfies condition (S): every M-ring is a subdirect sum of prime M-rings. Thus we obtained a characterization of semisimple classes of special radicals; a subclas S of rings is the semisimple class of a special radical if and only if S is regular, subdirectly closed, essentially closed, and satisfies condition (S). The results are valid for alternative rings too.


1981 ◽  
Vol 24 (1) ◽  
pp. 5-7 ◽  
Author(s):  
A. D. Sands

Throughout this paper we shall work in the class of associative rings. In (4) it was shown that a class of rings is a semisimple class if and only if it is closed under extensions and ideals and is coinductive. This establishes a duality between radical classes and semisimple classes. This result has been proved also for classes of alternative rings in (2). In the original work by Kuros (1) on this subject two conditions were used for semisimple classes, one of which was weaker than the assumption that the class is closed under ideals. This condition is that every non-zero ideal of a ring in the class should have a non-zero homomorphic image in the class. It is natural to ask whether in the above set of conditions the condition of being closed under ideals can be replaced by this weaker condition. This question is raised in (3) and in (5) but it is suggested there that, in order to compensate, the coinductive condition be replaced by the stronger condition that the class is closed under subdirect sums. In fact we shall show that the weaker condition may be used without needing to replace the coinductive condition. We also give examples to show independence relations among these conditions.


Sign in / Sign up

Export Citation Format

Share Document