input distribution
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 26)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
pp. 1-5
Author(s):  
Xianliang Gong ◽  
Yulin Pan

Abstract The authors of the discussed paper simplified the information-based acquisition on estimating statistical expectation and developed analytical computation for each involved quantity under uniform input distribution. In this discussion, we show that (1) the last three terms of the acquisition always add up to zero, leaving a concise form with a much more intuitive interpretation of the acquisition; (2) the analytical computation of the acquisition can be generalized to arbitrary input distribution, greatly broadening the application of the developed framework.


2021 ◽  
Author(s):  
Daniel Schwabe ◽  
Martin Falcke

Single-cell RNA sequencing determines RNA copy numbers per cell for a given gene. However, technical noise poses the question how observed distributions (output) are connected to their cellular distributions (input). We model a single-cell RNA sequencing setup consisting of PCR amplification and sequencing, and derive probability distribution functions for the output distribution given an input distribution. We provide copy number distributions arising from single transcripts during PCR amplification with exact expressions for mean and variance. We prove that the coefficient of variation of the output of sequencing is always larger than that of the input distribution. Experimental data reveals the variance and mean of the input distribution to obey characteristic relations, which we specifically determine for a HeLa data set. We can calculate as many moments of the input distribution as are known of the output distribution (up to all). This, in principle, completely determines the input from the output distribution.


Author(s):  
Yoshihiro Kanno

AbstractThis study considers structural optimization under a reliability constraint, in which the input distribution is only partially known. Specifically, when it is only known that the expected value vector and the variance-covariance matrix of the input distribution belong to a given convex set, it is required that the failure probability of a structure should be no greater than a specified target value for any realization of the input distribution. We demonstrate that this distributionally-robust reliability constraint can be reduced equivalently to deterministic constraints. By using this reduction, we can handle a reliability-based design optimization problem under the distributionally-robust reliability constraint within the framework of deterministic optimization; in particular, nonlinear semidefinite programming. Two numerical examples are solved to demonstrate the relation between the optimal value and either the target reliability or the uncertainty magnitude.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 856
Author(s):  
Eleonora Grassucci ◽  
Danilo Comminiello ◽  
Aurelio Uncini

Variational autoencoders are deep generative models that have recently received a great deal of attention due to their ability to model the latent distribution of any kind of input such as images and audio signals, among others. A novel variational autoncoder in the quaternion domain H, namely the QVAE, has been recently proposed, leveraging the augmented second order statics of H-proper signals. In this paper, we analyze the QVAE under an information-theoretic perspective, studying the ability of the H-proper model to approximate improper distributions as well as the built-in H-proper ones and the loss of entropy due to the improperness of the input signal. We conduct experiments on a substantial set of quaternion signals, for each of which the QVAE shows the ability of modelling the input distribution, while learning the improperness and increasing the entropy of the latent space. The proposed analysis will prove that proper QVAEs can be employed with a good approximation even when the quaternion input data are improper.


Sign in / Sign up

Export Citation Format

Share Document