programme cost
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 6)

H-INDEX

3
(FIVE YEARS 0)

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1742
Author(s):  
Martin K. Patel ◽  
Jean-Sébastien Broc ◽  
Haein Cho ◽  
Daniel Cabrera ◽  
Armin Eberle ◽  
...  

Energy efficiency programmes (EEPs) are schemes operated by utilities or other bodies in order to incentivize energy efficiency improvement, in particular by adoption of energy-efficient products and typically by means of an economic reward. Ample experience has been gained, especially in the U.S., where EEPs have been in use for decades, with the rationale of avoiding additional energy supply by improving energy efficiency. More recently, EEPs have been implemented in Europe and in Switzerland. This review paper presents insights from the U.S., the EU and especially from Switzerland, with a focus on levelised programme cost of saved energy (LPC) as a key performance indicator. These LPC values, which take the perspective of the programme operator, are typically low to very low compared to the cost of electricity supply, thereby representing an important argument in favour of their use. The country examples show that EEPs are being effectively and successfully put into practice, for example, in Switzerland both as (i) a national tender-based scheme (called ProKilowatt) and in the form of a (ii) utility-operated obligation-based scheme (in Geneva). EEPs not only call for diligent implementation but also for suitable legal settings, e.g., in the form of mandatory energy efficiency savings targets (as realised for energy efficiency obligations, EEOs) in combination with programme cost recovery. The main criticism of EEPs is the free-rider effect, which needs to be minimised. On the other hand, EEPs are accompanied by significant co-benefits (environmental, health-related and social) and spillover effects. In their currently prevalent form, EEPs allow one to effectively save energy at a (very) low cost (“low-hanging fruit”). They can hence play an important role in fostering the energy transition; however, they should be implemented as part of a policy portfolio, in combination with other policy instruments.



BMJ Open ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. e037386
Author(s):  
Gina Agarwal ◽  
Melissa Pirrie ◽  
Ricardo Angeles ◽  
Francine Marzanek ◽  
Lehana Thabane ◽  
...  

ObjectivesTo evaluate the cost-effectiveness of the Community Paramedicine at Clinic (CP@clinic) programme compared with usual care in seniors residing in subsidised housing.DesignA cost–utility analysis was conducted within a large pragmatic cluster randomised controlled trial (RCT). Subsidised housing buildings were matched by sociodemographics and location (rural/urban), and allocated to intervention (CP@clinic for 1 year) or control (usual care) via computer-assisted paired randomisation.SettingThirty-two subsidised seniors’ housing buildings in Ontario.ParticipantsBuilding residents 55 years and older.InterventionCP@clinic is a weekly community paramedic-led, chronic disease prevention and health promotion programme in the building common areas. CP@clinic is free to residents and includes risk assessments, referrals to resources, and reports back to family physicians.Outcome measuresQuality-adjusted life years (QALYs) gained, measured with EQ-5D-3L. QALYs were estimated using area-under-the curve over the 1-year intervention, controlling for preintervention utility scores and building pairings. Programme cost data were collected before and during implementation. Costs associated with emergency medical services (EMS) use were estimated. An incremental cost effectiveness ratio (ICER) based on incremental costs and health outcomes between groups was calculated. Probabilistic sensitivity analysis using bootstrapping was performed.ResultsThe RCT included 1461 residents; 146 and 125 seniors completed the EQ-5D-3L in intervention and control buildings, respectively. There was a significant adjusted mean QALY gain of 0.03 (95% CI 0.01 to 0.05) for the intervention group. Total programme cost for implementing in five communities was $C128 462 and the reduction in EMS calls avoided an estimated $C256 583. The ICER was $C2933/QALY (bootstrapped mean ICER with Fieller’s 95% CI was $4850 ($2246 to $12 396)) but could be even more cost effective after accounting for the EMS call reduction.ConclusionThe CP@clinic ICER was well below the commonly used Canadian cost–utility threshold of $C50 000. CP@clinic scale-up across subsidised housing is feasible and could result in better health-related quality-of-life and reduced EMS use in low-income seniors.Trial registration numberClinicaltrials.gov, NCT02152891.



Sign in / Sign up

Export Citation Format

Share Document