therapeutic ratio
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 25)

H-INDEX

31
(FIVE YEARS 3)

Author(s):  
Natalie Viscariello ◽  
Matthew D. Greer ◽  
Upendra Parvathaneni ◽  
Jay J. Liao ◽  
George E. Laramore ◽  
...  

Abstract Purpose Neutron therapy is a high linear energy transfer modality that is useful for the treatment of radioresistant head and neck (H&N) cancers. It has been limited to 3-dimensioanal conformal-based fast-neutron therapy (3DCNT), but recent technical advances have enabled the clinical implementation of intensity-modulated neutron therapy (IMNT). This study evaluated the comparative dosimetry of IMNT and 3DCNT plans for the treatment of H&N cancers. Materials and Methods Seven H&N IMNT plans were retrospectively created for patients previously treated with 3DCNT at the University of Washington (Seattle). A custom RayStation model with neutron-specific scattering kernels was used for inverse planning. Organ-at-risk (OAR) objectives from the original 3DCNT plan were initially used and were then systematically reduced to investigate the feasibility of improving a therapeutic ratio, defined as the ratio of the mean tumor to OAR dose. The IMNT and 3DCNT plan quality was evaluated using the therapeutic ratio, isodose contours, and dose volume histograms. Results When compared with the 3DCNT plans, IMNT reduces the OAR dose for the equivalent tumor coverage. Moreover, IMNT is most advantageous for OARs in close spatial proximity to the target. For the 7 patients with H&N cancers examined, the therapeutic ratio for IMNT increased by an average of 56% when compared with the 3DCNT. The maximum OAR dose was reduced by an average of 20.5% and 20.7% for the spinal cord and temporal lobe, respectively. The mean dose to the larynx decreased by an average of 80%. Conclusion The IMNT significantly decreases the OAR doses compared with 3DCNT and provides comparable tumor coverage. Improvements in the therapeutic ratio with IMNT are especially significant for dose-limiting OARs near tumor targets. Moreover, IMNT provides superior sparing of healthy tissues and creates significant new opportunities to improve the care of patients with H&N cancers treated with neutron therapy.


2021 ◽  
Vol 161 ◽  
pp. S1106-S1107
Author(s):  
S. Spohn ◽  
I. Sachpazidis ◽  
R. Wiehle ◽  
B. Thomann ◽  
A. Sigle ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Tiziana Rancati ◽  
Claudio Fiorino ◽  
Giuseppe Sanguineti ◽  
Riccardo Valdagni ◽  
Ester Orlandi

2021 ◽  
Vol 11 ◽  
Author(s):  
Marike W. van Gisbergen ◽  
Emma Zwilling ◽  
Ludwig J. Dubois

To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.


Author(s):  
Anthony J. Chalmers ◽  
Rodrigo Gutierrez-Quintana ◽  
David J. Walker ◽  
Karin Williams ◽  
Duncan Forster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document